![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(F=\frac{4.\sqrt{x}+15}{2.\sqrt{x}+9}=\frac{4.\sqrt{x}+18-3}{2.\sqrt{x}+9}=\frac{2.\left(2.\sqrt{x}+9\right)}{2.\sqrt{x}+9}-\frac{3}{2.\sqrt{x}+9}=2-\frac{3}{2.\sqrt{x}+9}\)
Có: \(2.\sqrt{x}+9\ge9\Rightarrow\frac{3}{2.\sqrt{x}+9}\le\frac{1}{3}\)
\(\Rightarrow F=2-\frac{3}{2.\sqrt{x}+9}\ge\frac{5}{3}\)
Dấu "=" xảy ra khi \(2.\sqrt{x}=0\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
Vậy Min F = \(\frac{5}{3}\)khi x = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2\ge0\)
\(\Rightarrow2015x\ge0\)
\(\Rightarrow1-x^2\ge1\)
\(\Rightarrow\sqrt{1-x^2}\ge1\)
\(\Rightarrow\dfrac{2017-2015x}{\sqrt{1-x^2}}\ge\dfrac{2017}{1}=2017\)
Dấu "=" xảy ra khi \(x^2=0\)
\(\Leftrightarrow x=0\)
Vậy \(P\min\limits=2017\Leftrightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\sqrt{x+2016}=y\ge0\)\(\Rightarrow y^2=x+2016\)\(\Rightarrow x=y^2-2016\)
\(\Rightarrow M=y^2-2016+y\)\(=y^2+2.\frac{1}{2}.y+\frac{1}{4}-\frac{8065}{4}=\left(y+\frac{1}{2}\right)^2-\frac{8065}{4}\ge\)\(\left(\frac{1}{2}\right)^2-\frac{8065}{4}=-2016\)\(\forall y\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x+2016}=y=0\Leftrightarrow\)\(x+2016=0\Leftrightarrow x=-2016\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
A=(x-2)2 + \(\sqrt{ }\)3 .Ta có:(x-2)2 \(\ge\) 0 suy ra (x+2)2+ căn 3\(\ge\)căn 3 .Dấu = xảy ra \(\Leftrightarrow\)x=-2.Vạy Amin=căn 3\(\Leftrightarrow\)x=-2
B mik nghĩ là sai đề
C làm tương tự câu a
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x-\sqrt{x}=\left(\sqrt{x}^2-2\cdot\frac{1}{2}\cdot\sqrt{x}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)