K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

đáng lẽ phải là x^2+2x+3 chứ bạn 

y-1=(3x^2+10x+11)/(x^2+2x+3)-1

y-1=(3x^2+10+11-x^2-2x-3)/(x^2+2x+3)

y-1=(2x^2+8x+8)/(x^2+2x+3)

y-1=2(x+2)^2/(x^2+2x+3)>=0

y>=1

=>Min y=1 khi x+2=0 hay x=-2 

y-4=(3x^2+10x+11)/(x^2+2x+3)-4

y-4=(3x^2+10x+11-4x^2-8x-12)/(x^2+2x+3)

y-4=(-x^2+2x-1)/(x^2+2x+3)

y-4=-(x-1)^2/(x^2+2x+3)<=0

y<=4 

=>Max y=4 khi x-1=0 hay x=1 

12 tháng 11 2017

tau dell biết

mi hỏi ngu như chó vậy, về hỏi cho xem nó có biết ko

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

13 tháng 9 2016

hình như min của bài này là 16

AH
Akai Haruma
Giáo viên
8 tháng 9 2017

Lời giải:

a)

Áp dụng BĐT Cauchy-Schwarz:

\(4M=(3x^2+y^2)(3+1)\geq (3x+y)^2\)

\(\Leftrightarrow 4M\geq 1\Leftrightarrow M\geq \frac{1}{4}\)

Vậy \(M_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)

b) Với mọi \(x,y\in\mathbb{R}\Rightarrow (3x-y)^2\geq 0\)

\(\Leftrightarrow 9x^2+y^2-6xy\geq 0\Leftrightarrow (3x+y)^2-12xy\geq 0\)

\(\Leftrightarrow xy\leq \frac{(3x+y)^2}{12}=\frac{1}{12}\)

Vậy \(K_{\max}=\frac{1}{12}\Leftrightarrow x=\frac{1}{6};y=\frac{1}{2}\)

13 tháng 5 2020

Ta có: \(\left(x^2+y^2+2xy+2yz+2xz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=3\)

\(\Rightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=3\)

\(\Rightarrow\left(x+y+z\right)^2\le3\)

Dấu "=" xảy ra <=> x=y=z

Do đó \(-\sqrt{3}\le x+y+z\le\sqrt{3}\)

\(\Rightarrow-\sqrt{3}\le A\le\sqrt{3}\)

=> \(\hept{\begin{cases}Min_A=-\sqrt{3}\Leftrightarrow x=y=z=\frac{-\sqrt{3}}{3}\\Max_A=\sqrt{3}\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\end{cases}}\)

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 10 2020

a) \(A=x^2+6x+1=\left(x^2+2\cdot x\cdot3+3^2\right)-8\)

\(=\left(x+3\right)^2-8\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> \(\left(x+3\right)^2-8\ge-8\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3

Vậy Amin = -8 khi x = -3

b) \(2x^2+10x-5=2\left(x^2+5x-\frac{5}{2}\right)\)

\(=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{35}{2}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\)

Vì (x + 5/2)2 \(\ge0\forall x\)

=> \(2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\ge-\frac{35}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 5/2)2 = 0 => x = -5/2

Vậy Bmin = -35/2 khi x = -5/2

c) \(x^2-5x=\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\)

Vì (x - 5/2)2 \(\ge\)0 với mọi x

=> \(\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu " = " xảy ra khi và chỉ khi (x - 5/2)2 = 0 => x = 5/2

Vậy Cmin = -25/4 khi x = 5/2