Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2006}{2007^2}+\dfrac{x^2-4014x+2007^2}{2007^2x^2}=\dfrac{2006}{2007^2}+\dfrac{\left(x-2007\right)^2}{2007^2x^2}\ge\dfrac{2006}{2007^2}\)
Vậy GTNN là \(A=\dfrac{2006}{2007^2}\) đạt được khi \(x=2007\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Leftrightarrow x=2007\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)
\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Rightarrow x=2007\)
x=2006
=>x+1=2007
thay x+1=2007 vào A ta được:
A=x6-(x+1)x5+(x+1)x4-(x+1)x3+(x+1)x2-(x+1)x+(x+1)
=x6-x6-x5+x5+x4-x4-x3+x3+x2-x2-x+x+1
=1
Vậy với x=2006 thì A=1
Thay x=2006 vào đa thức A,ta có:
A=20066-2007.20065+2007.20064-2007.20063+2007.20062-2007.2006+2007
=20066-(2006+1).20065+(2006+1).20064-(2006+1).20063+(2006+1).20062-(2006+1).2006+(2006+1)
=20066-20066-20065+20065+20064-20064-20063+20063+20062-20062-2006+2006+1
=(20066-20066)+(-20065+20065)+(20064-20064)+(-20063+20063)+(20062-20062)+(-2006+2006)+1
=1
\(A=\frac{x^2-2x+2007}{2007x^2}=\frac{2006}{2007^2}+\frac{x^2-4014x+2007^2}{2007^2x^2}=\frac{2006}{2007^2}+\frac{\left(x-2007\right)^2}{2007^2x^2}\ge\frac{2006}{2007^2}\)
Dấu ''='' xảy ra \(\Leftrightarrow\) x = 2007
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)
\(=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
A min =\(\frac{2006}{2007}\)khi \(x-2007=0\) hay \(x=2007\)
ĐKXĐ: \(x\ne0\)
\(\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2.2007x+2007^2}{2007^2.x^2}\)\(\Rightarrow\dfrac{\left(x-2007\right)^2}{2007^2.x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=2007\)
Vậy min = \(\dfrac{2006}{2007^2}\)