\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)

Với 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

x=2006

=>x+1=2007

thay x+1=2007 vào A ta được:

A=x6-(x+1)x5+(x+1)x4-(x+1)x3+(x+1)x2-(x+1)x+(x+1)

=x6-x6-x5+x5+x4-x4-x3+x3+x2-x2-x+x+1

=1

Vậy với x=2006 thì A=1

22 tháng 7 2015

Thay x=2006 vào đa thức A,ta có:

A=20066-2007.20065+2007.20064-2007.20063+2007.20062-2007.2006+2007

=20066-(2006+1).20065+(2006+1).20064-(2006+1).20063+(2006+1).20062-(2006+1).2006+(2006+1)

=20066-20066-20065+20065+20064-20064-20063+20063+20062-20062-2006+2006+1

=(20066-20066)+(-20065+20065)+(20064-20064)+(-20063+20063)+(20062-20062)+(-2006+2006)+1

=1

15 tháng 7 2018

x^2+y^2+2x+2y+2(x+1)(y+1)+2

18 tháng 5 2017

Giải phương trình chứ chứng minh cái gì

\(\frac{1}{2x-2006}+\frac{1}{3-2007x}+\frac{1}{2006x+2005}=\frac{1}{x+2}\)

\(\Leftrightarrow\left(\frac{1}{2x-2006}-\frac{1}{x+2}\right)+\left(\frac{1}{3-2007x}+\frac{1}{2006x+2005}\right)=0\)

\(\Leftrightarrow\frac{x-2008}{\left(2x-2006\right)\left(x+2\right)}+\frac{x-2008}{\left(3-2007x\right)\left(2006x-2005\right)}=0\)

\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{\left(2x-2006\right)\left(x+2\right)}+\frac{1}{\left(3-2007x\right)\left(2006x-2005\right)}\right)=0\)

\(\Leftrightarrow\left(x-2008\right)\left(2008x-1\right)\left(2005x+2003\right)=0\)

\(\Leftrightarrow x=2008;x=\frac{1}{2008};x=-\frac{2003}{2005}\)

29 tháng 3 2017

\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2006}{2007^2}+\dfrac{x^2-4014x+2007^2}{2007^2x^2}=\dfrac{2006}{2007^2}+\dfrac{\left(x-2007\right)^2}{2007^2x^2}\ge\dfrac{2006}{2007^2}\)

Vậy GTNN là \(A=\dfrac{2006}{2007^2}\) đạt được khi \(x=2007\)

26 tháng 7 2017

a) \(x^2+7x+6\)

\(=x^2+x+6x+6\)

\(=x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b) \(x^4 +2008.x^2+2007.x+2008\)

\(= x^4 +2008x^2+2008x-x+2008\)
\(= x(x^3-1)+2008(x^2+x+1) \)


\(= x(x-1)(x^2+x+1)+2008(x^2+x+1) \)
\(= (x^2+x+1)(x^2-x+2008) \)

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Leftrightarrow x=2007\)

17 tháng 3 2020

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Rightarrow x=2007\)