Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)
Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)
gợi ý thôi em câu này có gì khó đâu
c lớn hơn hoặc bằng 1
d nhỏ hơn hoặc = 10
trị tuyệt đối lớn lơn hoặc = 0
mẫu lớn số bé mẫu bé số lớn
Câu a hình như sai đề mk sửa nha
a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)
Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy Min A=-1 khi \(x=-\frac{1}{6}\)
b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)
Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)
\(\frac{4}{9}x=\frac{2}{15}\)
\(x=\frac{3}{10}\)
Vậy Max B=3 khi \(x=\frac{3}{10}\)
1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath
Ta có:
\(I=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|=\left(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\)
\(=\left(\left|x+\frac{1}{2}\right|+\left|-x-\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\ge\left|x+\frac{1}{2}-x-\frac{1}{4}\right|+\left|x+\frac{1}{3}\right|=\frac{1}{4}+\left|x+\frac{1}{3}\right|\ge\frac{1}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\\x+\frac{1}{3}=0\end{cases}}\Leftrightarrow x=-\frac{1}{3}\)
Vậy min I = 1/4 đạt tại x = -1/3.
\(B=\frac{x^2+2x+3}{x^2+2}=1+\frac{2x+1}{x^2+2}\)
Giờ ta tìm GTLN, và GTNN của \(\frac{2x+1}{x^2+2}=A\)
Tìm min
\(2A=\frac{4x+2}{x^2+2}=\frac{x^2+4x+4-x^2-2}{x^2+2}\)
\(=\frac{\left(x+2\right)^2}{x^2+2}-1\)
Mà (x + 2)2 \(\ge0\)và x2 + 2 > 0 nên
\(2A=\frac{\left(x+2\right)^2}{x^2+2}-1\ge-1\)
\(\Rightarrow A\ge-\frac{1}{2}\)
\(\Rightarrow B\ge1-\frac{1}{2}=\frac{1}{2}\)
Đạt được khi \(x=-2\)
Tìm Max
\(A=\frac{2x+1}{x^2+2}=\frac{-x^2+2x-1+x^2+2}{x^2+2}\)
\(=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)(tương tự cái trên)
\(\Rightarrow B\le1+1=2\)
Đạt được khi x = 1
\(B=\frac{x^2+2x+3}{x^2+2}\)
\(\Leftrightarrow Bx^2+2B=x^2+2x+3\)
\(\Leftrightarrow\left(B-1\right)x^2-2x+2B-3=0\)
Để pt (theo x) có nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow1-\left(2B-3\right)\left(B-1\right)\ge0\)
\(\Leftrightarrow2B^2-5B+2\le0\)
\(\Leftrightarrow\frac{1}{2}\le B\le2\)
Vậy \(\hept{\begin{cases}GTNN:\frac{1}{2}\\GTLN:2\end{cases}}\)