Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)
\(\Rightarrow x=29\)
2)
a) \(=x^2-9-x^2+6x-9=6x-18\)
b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
1) 2x(x + 1) - x2(x + 2) + x3 - x + 4 = 0
<=> 2x.x + 2x.1 + (-x2).x + (-x2).2 + x3 - x + 4 = 0
<=> 2x2 + 2x - x3 - 2x2 + x3 - x = 0 - 4
<=> x = -4
=> x = -4
2) xem lại đề rồi chúng mình nói chuyện cậu nha :))
3) tương tự (mình hơi lười, thông cảm :v)
3, [(3x - 5)(7 - 5x)] - [(5x + 2)(2 - 3x)] = 4
<=> ( 21x -15x^2 -35 +25x) - (10x -15x^2 + 4-6x)=4
<=> 21x -15x^2 -35 +25x- 10x + 15x^2 - 4+6x =4
<=> 42x - 39 =4
<=> 42x = 43
<=< x =43/42
2, (3x - 2)(4x - 5 ) - (2x - 1)(6x + 2) = 0
12x2- 15x - 8x + 10 - 12x2 - 4x + 6x + 2 = 0
- 21x = -12
x = 4/7
1, đã có người giải
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a)
$|3x-2|=2x\Rightarrow x\geq 0$.
Xét 2 TH:
TH1: $x\geq \frac{2}{3}$ thì pt trở thành:
$3x-2=2x\Leftrightarrow x=2$ (thỏa mãn)
TH2: $0\leq x< \frac{2}{3}$ thì pt trở thành:
$2-3x=2x\Leftrightarrow x=\frac{2}{5}$ (thỏa mãn)
b)
PT $\Rightarrow x\geq 0$
$\Rightarrow |4+2x|=4+2x$. PT trở thành:
$4+2x=4x\Leftrightarrow x=2$ (thỏa mãn)
c)
Xét các TH sau:
TH1: $x\geq \frac{3}{2}$. Khi đó, pt trở thành:
$2x-3=-x+21$
$\Leftrightarrow x=8$ (thỏa mãn)
TH2: $x< \frac{3}{2}$. Khi đó, pt trở thành:
$3-2x=-x+21$
$\Leftrightarrow x=-18$ (thỏa mãn)
d)
Từ PT suy ra $x-2\geq 0\Leftrightarrow x\geq 2(*)$
Khi đó: $|3x-1|=3x-1$. PT trở thành:
$3x-1=x-2$
$\Leftrightarrow 2x=-1<0\Rightarrow x<0$ (mâu thuẫn với $(*)$)
Vậy PT vô nghiệm.
\(M=3-5x-x^2\)
\(-M=\left(x^2+2.2,5x+2,5^2\right)-9,25\)
\(-M=\left(x+2,5\right)^2-9,25\)
\(\Rightarrow M=9,25-\left(x+2,5\right)^2\)
Ta có: \(\left(x+2,5\right)^2\ge0\forall x\)
\(\Rightarrow9-\left(x+2,5\right)^2\ge9\forall x\)
\(M=9\Leftrightarrow\left(x+2,5\right)^2=0\Leftrightarrow x=-2,5\)
Vậy \(M_{m\text{ax}}=9\Leftrightarrow x=-2,5\)
\(N=-7+4x-3x^2\)
\(-N=3x^2-4x^2+7\)
\(-N=3.\left(x^2-2.\frac{2}{3}x+\frac{2^2}{3^2}\right)+\frac{17}{3}\)
\(-N=3.\left(x-\frac{2}{3}\right)^2+\frac{17}{3}\)
\(N=-3.\left(x-\frac{2}{3}\right)^2-\frac{17}{3}\)
Ta có: \(3.\left(x-\frac{2}{3}\right)^2\ge0\forall x\)
\(\Rightarrow-\frac{17}{3}-3\left(x-\frac{2}{3}\right)^2\le-\frac{17}{3}\)
\(N=-\frac{17}{3}\Leftrightarrow-3.\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(N_{max}=-\frac{17}{3}\Leftrightarrow x=\frac{2}{3}\)
\(P=4-6x^2\)
Ta có: \(6x^2\ge0\forall x\)
\(\Rightarrow4-6x^2\le4\forall x\)
\(P=4\Leftrightarrow6x^2=0\Leftrightarrow x=0\)
\(P_{max}=4\Leftrightarrow x=0\)
Tham khảo nhé~