Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)
\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)
\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)
\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)
Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)
\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)
c)Áp dụng BĐT CAuchy-Schwarz ta có:
\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)\)
\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)
\(\Rightarrow P^2\le4\Rightarrow P\le2\)
********************************************************
1) ĐK \(x\ge0\)
Ta có: \(\dfrac{2\sqrt{x}}{x+1}=\dfrac{-x+2\sqrt{x}-1+x+1}{x+1}=\dfrac{-\left(\sqrt{x}-1\right)^2}{x+1}+1\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x+1}\le1\) (Vì \(\dfrac{-\left(\sqrt{x}-1\right)^2}{x+1}\le0\))
Vậy GTLN của biểu thức này là 1 <=> x=1
2) ĐK \(x\ge0\)
Ta có: \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+4-\sqrt{x}}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\le2\) (Vì \(-\dfrac{\sqrt{x}}{\sqrt{x}+2}\le0\))
Vậy GTLN của biểu thức này là 2 <=> x=0
Mình làm mấy bài rút gọn thôi nhé :v (mấy cái kia mình làm sợ không đúng)
\(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1-\left(x+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}+1-x-2-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+0-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left[-\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(-1\right)}{x+\sqrt{x}+1}\\ =-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
Bài 3:
\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{\left(2x+\sqrt{x}\right)\sqrt{x}}{x}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+2\left(\sqrt{x}+1\right)\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x\left(2\sqrt{x}+1\right)}{x}+2\sqrt{x}+2\)
\(=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+1\\ =\dfrac{x-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{2x+1}{x+\sqrt{x}+1}\)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
a) điều kiện \(x\ge0;x\ne4;x\ne9\)
\(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(Q=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(Q=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(Q=\dfrac{2\sqrt{x}-9-\left(x-9\right)+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(Q=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(Q=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) ta có : \(Q=0\) \(\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+1=0\\\sqrt{x}-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-1\\\sqrt{x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=9\left(loại\right)\end{matrix}\right.\) vậy không có giá trị nào của x để Q = 0
c) ta có : \(x=\sqrt{7+\sqrt{24}}\Leftrightarrow x=\sqrt{\left(\sqrt{6}+1\right)^2}\Leftrightarrow x=\sqrt{6}+1\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{6}+1\right)}\)
thay vào Q ta có \(Q=\dfrac{\sqrt{\left(\sqrt{6}+1\right)}+1}{\sqrt{\left(\sqrt{6}+1\right)}-3}\)
d) ta có : \(Q>0\) \(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}>0\)
mà ta có : \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1>0\)
\(\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}>0\Leftrightarrow\sqrt{x}-3>0\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
vậy \(x\ge9\) thì \(Q>0\)
Lời giải:
Câu a:
Áp dụng BĐT Cô-si ngược dấu ta có:
\(\sqrt{3(x-3)}\leq \frac{3+(x-3)}{2}=\frac{x}{2}\)
\(\Rightarrow \sqrt{x-3}\leq \frac{x}{2\sqrt{3}}\Rightarrow \frac{\sqrt{x-3}}{x}\leq \frac{1}{2\sqrt{3}}\)
Hoàn toàn tương tự: \(\frac{\sqrt{y-3}}{y}\leq \frac{1}{2\sqrt{3}}\)
\(\Rightarrow p=\frac{\sqrt{x-3}}{x}+\frac{\sqrt{y-3}}{y}\leq \frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Dấu "=" xảy ra khi \(3=x-3; 3=y-3\Rightarrow x=y=6\)
Vậy \(p_{\max}=\frac{\sqrt{3}}{3}\Leftrightarrow x=y=6\)
Câu b: Các phân thức của $q$ là nghịch đảo của $p$ nên $q$ có min thôi em nhé. Nếu tìm min thì tương tự như câu a.
a, P=\(\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right)\div\left(\dfrac{x-\sqrt{x}+\sqrt{x}-4}{x-1}\right)\)
=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\times\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-4}\)
=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b, P<\(\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)<\(\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}< 0\)
ta có: \(\sqrt{x}\ge0\)với \(\forall x\ge0;x\ne1;x\ne4\)
\(2\left(\sqrt{x}+2\right)\ge0\) với\(\forall x\ge0;x\ne1;x\ne4\)
Vậy không có giá trị nào của x để P<\(\dfrac{1}{2}\)
\(\forall x\in R\Rightarrow A=\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\Leftrightarrow A\left(x-2\sqrt{x}+9\right)=\sqrt{x}\)
\(\Leftrightarrow Ax-2A\sqrt{x}-\sqrt{x}+9A=0\)
\(\Leftrightarrow A\sqrt{x}^2-\sqrt{x}\left(2A+1\right)+9A=0\)
\(\Rightarrow\Delta\ge0\Rightarrow\left(2A+1\right)^2-36A^2=-32A^2+4A+1\ge0\Rightarrow-\dfrac{1}{8}\le A\le\dfrac{1}{4}\Rightarrow A\le\dfrac{1}{4}\Rightarrow MaxA=\dfrac{1}{4}\)
\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=9\)