Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x > 0
\(0< x< 1\Leftrightarrow\log_2x< 0\)
Đặt \(t=\log_2x\), pt đã cho trở thành \(t^2-2mt+m+2=0\) (1)
YCBT ↔ pt (1) có hai nghiệm âm phân biệt
\(\Leftrightarrow\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+3m+2>0\\2m< 0\\m+2>0\end{cases}\) \(\Leftrightarrow-1< m< 0\)
Lời giải:
Ta có \(4^x-2m.2^x+(2m^2+5)=0\)
Coi \(2^x=a\) thì pt chuyển về pt bậc 2:
\(a^2-2ma+(2m^2+5)=0(*)\)
Ta thấy \(\Delta'=m^2-(2m^2+5)=-(m^2+5)<0\), do đó pt $(*)$ vô nghiệm, tức là không tồn tại $a$, kéo theo không tồn tại $x$
Do đó không tồn tại giá trị nào của $m$ thỏa mãn đkđb
y'=2x2-2(2m-3)x+2(m2-3m)=2(x-m)(x-m+3) => h/s nghịch biến trên (m-3; m) => YCBT <=> m-3 =<1 và 3=<m <=> 3=<m=<4
\(\Leftrightarrow3^{-\left|x-1\right|}=5m-3\)
Nhận thấy \(x_0-1\) là 1 nghiệm của pt thì \(-x_0+1\) cũng là 1 nghiệm của pt
Nên pt đã cho có nghiệm duy nhất khi và chỉ khi \(x_0-1=-x_0+1\Rightarrow x_0=1\)
\(\Rightarrow3^{-\left|1-1\right|}=5m-3\Leftrightarrow5m-3=1\Rightarrow m=\frac{4}{5}\)
2/ \(2^{4x-2m}=2^{3x}\)
\(\Leftrightarrow4x-2m=3x\Rightarrow x=2m\)