Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=x^3-mx^2+\left(1-2m\right)x+1\)
\(y'=3x^2-2mx+1-2m\)
Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).
Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)
Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì:
\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).
Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt.
\(y'=3x^2-2\left(m+2\right)x+m-1\)
\(\Delta'=\left(m+2\right)^2-3\left(m-1\right)=m^2+m+7>0;\forall m\)
Hàm luôn có CĐ-CT
Tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt đường thẳng d' đi qua CĐ-CT có dạng:
\(y=-\frac{2m^2+2m+14}{9}x+\frac{m^2+19m-11}{9}\)
\(\Leftrightarrow\left(2m^2+2m+14\right)x+9y-\left(m^2+19m-11\right)=0\)
\(\Rightarrow\) d' nhận \(\left(2m^2+2m+14;9\right)\) là 1 vtpt
Do d có 1 vtpt là \(\left(2;1\right)\) nên:
\(cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|2\left(2m^2+2m+14\right)+9\right|}{\sqrt{\left(2m^2+2m+14\right)^2+81}.\sqrt{5}}\)
Đặt \(2m^2+2m+14=t>0\)
\(\Rightarrow\frac{\left|2t+9\right|}{\sqrt{5t^2+405}}=\frac{\sqrt{3}}{2}\Leftrightarrow4\left(2t+9\right)^2=3\left(5t^2+405\right)\)
\(\Leftrightarrow t^2+144t-891=0\)
Nghiệm xấu quá, bạn tự hoàn thành :D
Cho hàm số y=-x3+(2m-1)x2-(2-m)-2. Tìm tất cả các giá trị của hàm số m để hàm số có cực đại cực tiểu
\(y'=3x^2-2mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{2m}{3}\end{matrix}\right.\)
\(x=0\Rightarrow y=1>0\) nên để hàm có 2 cực trị trái dấu \(\Leftrightarrow y\left(\frac{2m}{3}\right)< 0\) (với \(m\ne0\))
\(\Leftrightarrow\frac{8m^3}{27}-\frac{4m^3}{9}+1< 0\)
\(\Leftrightarrow\frac{4}{27}m^3>1\Rightarrow m>\frac{3}{\sqrt[3]{4}}\)
ta co y'=6x2-6(2m+1)x+6m(m+1). de co 2 diem cuc tri trai dau thi y'=0 co 2no fb <=>Δ'>0 P<O theo vi-et: x1.x2=m(m+1) <=>Δ'=9>0(dung) m(m+1)<0<=>-1<m<0