Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có để pt có 2 nghiệm phân biệt thì:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)
\(\Leftrightarrow m< 2\)
Theo vi-et ta có
\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)
Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)
\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow19m+52=0\)
\(\Leftrightarrow m=\frac{52}{19}\)(loại)
Không có m thỏa cái trên
PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé
x2 - 2mx + m2 -2 = 0
\(\Delta\)= 4m2 - 4 (m2 -2)
= 4m2 - 4m2 + 8
= 8 >0
\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{2m+\sqrt{8}}{2}\)= m +\(\sqrt{2}\)
x2 = m - \(\sqrt{2}\)
ta có \(|\)x13 - x23 \(|\)= 10\(\sqrt{2}\)
\(|\)(m +\(\sqrt{2}\))3 - (m - \(\sqrt{2}\))3 |= 10 \(\sqrt{2}\)
giải nốt pt này là ra đấy nha
#mã mã#
Đầu tiên cần tìm điều kiện của m để phương trình có 2 nghiệm nha bn
khi đó
\(x_1+x_2=2m\)
\(x_1.x_2=m^2-2\)
Ta có |\(x_1^3-x_2^3\)|=10\(\sqrt{2}\)
|(x1-x2)(x12-x1.x2+x22)|=10\(\sqrt{2}\)
(x1-x2)2. ((x1+x2)2-x1.x2)2=200 ( bước này là bình phương 2 vế nha bn )
(x12+x22-2x1x2) (4m2-m2+2)=200
((x1+x2)2-4x1x2)(3m2+2)=200
(4m2-4m2+8)(3m2+2)=200
3m2 =23
=> m=\(\sqrt{\frac{23}{3}}\)hoặc m=\(-\sqrt{\frac{23}{3}}\)
rồi bn đối chiếu điều kiện của m ở trên để phương trình có 2 no phân biệt nha
( bài mk lm dài có thế có sai sót ...mong bn thông cảm)
1. tìm đenta phẩy
sau đó cho đenta phẩy >0
tìm x1+x2,x1*x2 theo hệ thức viets
thay vào ra mà
Để pt có 2 nghiệm phân biệt x1;x2 thì \(\Delta=\left(-5\right)^2-4\left(-m-4\right)=41+4m>0\Leftrightarrow m>\frac{-41}{4}\)
Với m>-41/4 thì theo hệ thức Vi-et: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=-m-4\end{cases}}\)
\(x_1^2+x_2^2+x_1x_2=19\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=19\Leftrightarrow5^2-\left(-m-4\right)=19\)<=>m=-10(tm m>-41/4)
Vậy...
Xét phương trình trên có:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)
Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:
\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)
Với m<0. Áp dụng định lí Vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)
Ta có:
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))
<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)
<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)
<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)
<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)
<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)
Đặt t=\(\frac{m^2+4}{m}< 0\)
Ta có phương trình ẩn t:
\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)
Với t=-4 ta có:
\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)
vậy m=-2