\(\sqrt{x-1}\)+\(\dfrac{1}{\sqrt{x-1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2021

ĐKXĐ: \(x>1\)

- Với \(m=0\) thỏa mãn

- Với \(m\ne0\)

\(\Rightarrow m^2\left(x-1\right)+m=x\)

\(\Leftrightarrow\left(m^2-1\right)x=m^2-m\) (1)

Pt đã cho vô nghiệm khi:

TH1: (1) vô nghiệm \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m^2-1=0\\m^2-m\ne0\end{matrix}\right.\) \(\Leftrightarrow m=-1\)

TH2: (1) có nghiệm thỏa mãn \(x\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\x=\dfrac{m^2-m}{m^2-1}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{m}{m+1}-1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{1}{m+1}\ge0\end{matrix}\right.\) \(\Leftrightarrow m>-1\)

Vậy pt vô nghiệm khi \(m\ge-1\)

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

Có \(\sqrt{x+6\sqrt{x-9}}+m\sqrt{x+2\sqrt{x-9}-8}=x+\frac{3m+1}{2}\)

\(\Leftrightarrow \sqrt{(\sqrt{x-9}+3)^2}+m\sqrt{(\sqrt{x-9}+1)^2}=x+\frac{3m+1}{2}\)

\(\Leftrightarrow \sqrt{x-9}+3+m(\sqrt{x-9}+1)=x+\frac{3m+1}{2}\)

\(\sqrt{x-9}(m+1)=x+\frac{3m+1}{2}-m-3\)

\(\Leftrightarrow \sqrt{x-9}(m+1)=x+\frac{m-5}{2}\)

Đặt \(\sqrt{x-9}=t\) . Ta cần tìm m sao cho PT có hai nghiệm \(t_1,t_2| 0\leq t_1< 1< t_2\)

BPT tương đương:

\(t(m+1)=t^2+9+\frac{m-5}{2}\)

\(\Leftrightarrow 2t^2-2t(m+1)+(m+13)=0\)

Để PT có hai nghiệm thì; \(\Delta'=(m+1)^2-2(m+13)>0\)

\(\Leftrightarrow m^2-25>0\Leftrightarrow m>5\) hoặc \(m< -5\) (1)

Khi đó áp dụng hệ thức Viete:

\(\left\{\begin{matrix} t_1+t_2=m+1\\ t_1t_2=\frac{m+13}{2}\end{matrix}\right.\)

Để hai nghiệm thỏa mãn \(0\leq t_1< 1< t_2\Rightarrow \left\{\begin{matrix} t_1t_2\geq 0\\ (t_1-1)(t_2-1)< 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ t_1t_2-(t_1+t_2)+1< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{m+13}{2}-(m+1)+1< 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{13-m}{2}< 0\end{matrix}\right.\Leftrightarrow m> 13\) (2)

Kết hợp (1); (2) suy ra $m\geq 13$

20 tháng 11 2017

a)TXĐ:\(x-1>0\Rightarrow x>1\)

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.

6 tháng 10 2017

a. R / \(\left\{-2\right\}\)

b. R / \(\left\{4;-1\right\}\)

c. R ( mẫu luôn > 0 )

d. \(\left(2;+\infty\right)\)

6 tháng 10 2017

e. \(\left(-\infty;\dfrac{5}{6}\right)\)

f. \(\left(2;+\infty\right)\)

g. \(\left(1;3\right)\)

h. \(\left(5;+\infty\right)\)

i. \(\left(1;+\infty\right)\)

k. \(\left(-\infty;2\right)\)

l. R/\(\left\{\pm3\right\}\)

m. \(\left(-2;+\infty\right)/\left\{3\right\}\)

24 tháng 4 2017

a/ \(M=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}-\left(\sqrt{x}+2\right)\right].\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{-2\sqrt{x}}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\sqrt{x}-x\)

b/ Chứng minh

\(\sqrt{x}-x\le\dfrac{1}{4}\)

\(\Leftrightarrow4x-4\sqrt{x}+1\ge0\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)^2\ge0\) (đúng)

7 tháng 12 2020

a, ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{x-3}\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-1=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\\x=2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

b, ĐKXĐ: \(x\ge-1\)

\(pt\Leftrightarrow\sqrt{x+1}\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\x+1=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ: \(x>2\)

\(pt\Leftrightarrow\frac{x}{\sqrt{x-2}}=\frac{3-x}{\sqrt{x-2}}\)

\(\Leftrightarrow x=3-x\)

\(\Leftrightarrow x=\frac{3}{2}\left(l\right)\)

\(\Rightarrow\) Phương trình vô số nghiệm

d, ĐKXĐ: \(x>-1\)

\(pt\Leftrightarrow\frac{x^2-4}{\sqrt{x+1}}=\frac{x+3+x+1}{\sqrt{x+1}}\)

\(\Leftrightarrow x^2-4=2x+4\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=4\)

31 tháng 10 2018

a) đk \(\left\{{}\begin{matrix}2x+1\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ne0\end{matrix}\right.\)

b) đk \(x+3>0\Leftrightarrow x>-3\)

c) \(\left\{{}\begin{matrix}x-1>0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ge0\end{matrix}\right.\Leftrightarrow x>1\)

d) đk \(\left\{{}\begin{matrix}x^2-4\ne0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne\pm2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)

29 tháng 10 2017

điều kiện xát định \(x\ge0\)

ta có : \(\left(\sqrt{x}+1\right).P=\sqrt{x}+m\Leftrightarrow\left(\sqrt{x}+1\right).\dfrac{x}{\sqrt{x}+1}=\sqrt{x}+m\)

\(\Leftrightarrow x=\sqrt{x}+m\) \(\Leftrightarrow m=x-\sqrt{x}\) với \(x\ge0\)