Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(2-4m\right)x+3m\cdot m-6m-9=0\)
\(\Leftrightarrow\left(2-4m\right)x+3m^2-6m-9=0\)
\(\Leftrightarrow\left(2-4m\right)x+3\left(m^2-2m+1\right)-12=0\)
\(\Leftrightarrow\left(2-4m\right)x=12-3\left(m-1\right)^2\)
Để phương trình sau có vô số nghiệm thì \(2-4m=0;12-3\left(m-1\right)^2=0\)
\(\Leftrightarrow m=\frac{1}{2};m=3;m=-1\)
Vậy.................
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
- PT Vô nghiệm khi 2m-1=0 và 3m-5 \(\ne\) 0( Vì một cái bằng 0 cộng một cái khác 0 mà kết quả bằng 0 thì quá vô lí )
- <=>m=1/2 và m \(\ne\) 5/3
- Vậy PT vô nghiệm khi m=1/2
:))
PT vô nghiệm khi 6mx = 0
<=> m = 0
PT vô nghiệm khi 6m = 0
<=> m = 0