Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://video.vietjack.com/upload2/quiz_source1/2020/01/100-bai-trac-nghiem-ham-so-mu-va-logarit-co-loi-giai-chi-tiet-3-1-1579254891.PNG
bạn tham khảo nha
đặt t = \(\sqrt{-x^2+2x+15}\) ( đk t >= 0 )
xét hàm f(t) = t^2 - 4t -28
....tự làm ...
Điều kiện x>0. Nhận thấy x=2 là nghiệm.
Nếu x>2 thì
\(\frac{x}{2}>\frac{x+2}{4}>1\); \(\frac{x+1}{3}>\frac{x+3}{5}>1\)
Suy ra
\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)
\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)
Suy ra vế trái < vế phải, phương trình vô nghiệm.
Đáp số x=2
Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)
\(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)
Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có
\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)
Lập bảng biến thiên ta được
\(f\left(0\right)=1;f\left(2\right)=-1\)
\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)
Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)
Câu 1:
Đặt \(3^x=t(t>0)\)
PT trở thành:
\(t^2-6.t+5=m\)
\(\Leftrightarrow t^2-6t+(5-m)=0\)
Để PT có đúng một nghiệm thì \(\Delta'=9-(5-m)=0\)
\(\Leftrightarrow m=-4\)
Thử lại \(9^x-6.3^x+9=0\Leftrightarrow 3^x=3\Leftrightarrow x=1\in [0;+\infty )\) (đúng)
Vậy \(m=-4\)
Câu 2:
\(4^x-2^x-m\geq 0\Leftrightarrow (2^x)^2-2^x-m\geq 0\)
Đặt \(2^x=t\Rightarrow t^2-t-m\geq 0\) với mọi \(t\in (1; 2)\)
\(\Leftrightarrow m\leq t^2-t\Leftrightarrow m\leq \min (t^2-t)\)
Xét hàm \(f(t)=t^2-t\Rightarrow f'(t)=2t-1>0\forall t\in (1;2)\)
\(\Rightarrow f(t)> f(1)=0\) với mọi \(t\in (1;2)\)
Do đó \(m\leq 0\)
đi từ hướng làm để ra được bài toán:
Ta thấy muốn f(|x|) có 5 điểm cực trị thì f'(x) phải có 2 điểm cực trị dương
giải f'(x)=0 \(\left\{{}\begin{matrix}x=1\\x^2-2\left(m+1\right)x+m^2-1=0\left(2\right)\end{matrix}\right.\) phương trình (2) phải có 2 nghiệm phân biệt trái dấu nhau
Ta có: \(\Delta>0\Leftrightarrow m>-1\)
Theo yêu cầu bài toán: \(m^2-1>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)
Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$
$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$
mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$
=> m≥0
Đặt :
\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)
DKXĐ : \(-1\le x\le8\)
\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1)
BBT của \(t^2\) :
\(x\) | \(-1\) \(0\) \(8\) |
\(t^2\) | \(9+2\sqrt{2}\) \(9\) \(9\) |
\(t\) | \(1+2\sqrt{2}\) \(1\) \(2\sqrt{2}\) |
\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)
Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)
\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)
BBT của \(f\left(t\right)\) :
\(t\) | \(1\) \(2\sqrt{2}\) |
\(f\left(t\right)\) | \(4\sqrt{2}-1\) \(-6\) |
\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\) thì pt có nghiệm
\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)
Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU
1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)
ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)
\(\Leftrightarrow0\le m\le3\)
\(\Leftrightarrow log_5\left(5x^2+5\right)\ge log_5\left(mx^2+4x+m\right)\)
BPT nghiệm đúng với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}5x^2+5\ge mx^2+4x+m\\mx^2+4x+m>0\end{matrix}\right.\) ;\(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2-4x+5\ge m\left(x^2+1\right)\\m\left(x^2+1\right)>-4x\end{matrix}\right.\) ;\(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{5x^2-4x+5}{x^2+1}\\m>-\dfrac{4x}{x^2+1}\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\min\limits_{x\in R}\left(\dfrac{x^2-4x+1}{x^2+1}\right)\\m>\max\limits_{x\in R}\left(-\dfrac{4x}{x^2+1}\right)\end{matrix}\right.\)
Ta có: \(\dfrac{5x^2-4x+5}{x^2+1}=\dfrac{3\left(x^2+1\right)+2\left(x-1\right)^2}{x^2+1}=3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)
\(\Rightarrow\min\limits_{x\in R}\left(\dfrac{5x^2-4x+5}{x^2+1}\right)=3\)
\(-\dfrac{4x}{x^2+1}=\dfrac{2\left(x^2+1\right)-2\left(x+1\right)^2}{x^2+1}=2-\dfrac{2\left(x+1\right)^2}{x^2+1}\le2\)
\(\Rightarrow\max\limits_{x\in R}\left(\dfrac{-4x}{x^2+1}\right)=2\)
\(\Rightarrow2< m\le3\)