K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Câu 1:

Đặt \(3^x=t(t>0)\)

PT trở thành:

\(t^2-6.t+5=m\)

\(\Leftrightarrow t^2-6t+(5-m)=0\)

Để PT có đúng một nghiệm thì \(\Delta'=9-(5-m)=0\)

\(\Leftrightarrow m=-4\)

Thử lại \(9^x-6.3^x+9=0\Leftrightarrow 3^x=3\Leftrightarrow x=1\in [0;+\infty )\) (đúng)

Vậy \(m=-4\)

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Câu 2:

\(4^x-2^x-m\geq 0\Leftrightarrow (2^x)^2-2^x-m\geq 0\)

Đặt \(2^x=t\Rightarrow t^2-t-m\geq 0\) với mọi \(t\in (1; 2)\)

\(\Leftrightarrow m\leq t^2-t\Leftrightarrow m\leq \min (t^2-t)\)

Xét hàm \(f(t)=t^2-t\Rightarrow f'(t)=2t-1>0\forall t\in (1;2)\)

\(\Rightarrow f(t)> f(1)=0\) với mọi \(t\in (1;2)\)

Do đó \(m\leq 0\)

NV
6 tháng 10 2021

\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)

\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)

\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)

Do đó:

\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)

\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)

Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)

Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho

NV
25 tháng 6 2021

ĐKXĐ: \(-x^2+4x+m>0\)

\(log_2\left(-x^2+4x+m\right)-log_2\left(x^2+2\right)< log_23\)

\(\Leftrightarrow log_2\left(\dfrac{-x^2+4x+m}{x^2+2}\right)< log_23\)

\(\Leftrightarrow\dfrac{-x^2+4x+m}{x^2+2}< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+4x+m>0\\-x^2+4x+m< 3x^2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>x^2-4x\\m< 4x^2-4x+6\end{matrix}\right.\) ; \(\forall x\in\left[1;5\right]\)

Xét hai hàm \(\left\{{}\begin{matrix}f\left(x\right)=x^2-4x\\g\left(x\right)=4x^2-4x+6\end{matrix}\right.\) trên \(\left[1;5\right]\) ta được: \(\left\{{}\begin{matrix}f\left(x\right)_{max}=f\left(5\right)=5\\g\left(x\right)_{min}=g\left(1\right)=6\end{matrix}\right.\)

\(\Rightarrow5\le m\le6\)

Có 2 giá trị nguyên của m

11 tháng 4 2016

Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)

                                                   \(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)

Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có

\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)

Lập bảng biến thiên ta được 

\(f\left(0\right)=1;f\left(2\right)=-1\)

\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)

Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)

15 tháng 12 2017