Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=4x^3-4\left(m+1\right)x\)
\(y''=12x-4\left(m+1\right)\)
Hàm đạt cực đại tại x=1 khi: \(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m+1\right)=0\\12-4\left(m+1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m>2\end{matrix}\right.\)
Không tồn tại m thỏa mãn
2.
\(y'=4x^3-2\left(m+1\right)x\)
\(y''=12x^2-2\left(m+1\right)\)
Hàm đạt cực tiểu tại x=-1 khi:
\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2\left(m+1\right)=0\\12-2\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m< 5\end{matrix}\right.\) \(\Rightarrow m=1\)
\(y'=\dfrac{x^2+2mx-m^2+m+2}{\left(x-m\right)^2}\)
Hàm đạt cực trị tại \(x=0\Rightarrow y'=0\) có nghiệm \(x=0\)
\(\Rightarrow\dfrac{-m^2+m+2}{m^2}=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
- Với \(m=-1\Rightarrow y=\dfrac{x^2+2x-2}{x-1}\Rightarrow y'=\dfrac{x^2-2x}{\left(x-1\right)^2}\)
\(\Rightarrow y''=\dfrac{2}{\left(x-2\right)^3}< 0\) tại \(x=0\Rightarrow x=0\) là cực đại (ko thỏa mãn)
- Với \(m=2\Rightarrow y=\dfrac{x^2-x-2}{x+2}\Rightarrow y'=\dfrac{x^2+4x}{\left(x+2\right)^2}\)
\(\Rightarrow y''=\dfrac{8}{\left(x+2\right)^3}>0\) tại \(x=0\Rightarrow\) thỏa mãn
Vậy \(m=2\)
\(y'=3x^2-2mx+2\left(m+1\right)\)
\(y''=6x-2m\)
Hàm đạt cực tiểu tại \(x=-1\) khi:
\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3+2m+2\left(m+1\right)=0\\-6-2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{5}{4}\\m< -3\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn