K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3

    Để hai đường thẳng đã cho d1 và d2 song song với nhau thì

   m - 2  = 3

   m = 3 + 2

   m = 5

Vậy với m = 5 thì d1 và d2 song song với nhau.

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đồ thị hai hàm số \(y = 2mx - 2\) và \(y = 6x + 3\) song song với nhau khi:

\(\left\{ \begin{array}{l}2m = 6\\ - 2 \ne 3\end{array} \right. \Rightarrow 2m = 6 \Leftrightarrow m = 6:2 \Leftrightarrow m = 3\)

Vậy \(m = 3\) thì đồ thị hai hàm số \(y = 2mx - 2\) và \(y = 6x + 3\) song song với nhau.

12 tháng 9 2023

Để hai hàm số song song:

=> 2m=6 <=> m=3

4 tháng 12 2023

a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2

 

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)

=>\(2m-m\ne1+1\)

=>\(m\ne2\)

14 tháng 12 2023

a: Thay x=1 và y=4 vào y=mx+1, ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

b: Để hai đường thẳng này song song với nhau thì

\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)

=>m=0

14 tháng 12 2023

thanks nha

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đáp án đúng là D

- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = \dfrac{1}{3}\).

- Đồ thị hàm số  \(y =  - \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a =  - \dfrac{1}{3}\).

- Đồ thị hàm số \(y =  - 3x + 2\) là đường thẳng có hệ số góc là \(a =  - 3\).

Vì cả ba đường thẳng đều có hệ số góc khác nhau nên chúng cắt nhau.

- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\).

- Đồ thị hàm số \(y =  - \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)

- Đồ thị hàm số \(y =  - 3x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)

Do đó điểm \(A\left( {0;2} \right)\) là giao điểm của ba đồ thị hàm số.

Vậy đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm. 

15 tháng 12 2023

Sửa đề: (d'): y=-4x+3

a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:

\(0\left(m+2\right)+m=0\)

=>m=0

b:

Sửa đề: Để đường thẳng (d)//(d')

Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)

=>m=-6

c: Sửa đề: cắt đường thẳng d'

Để (d) cắt (d') thì \(m+2\ne-4\)

=>\(m\ne-6\)

d: Để (d) trùng với (d') thì

\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)

=>\(m\in\varnothing\)

19 tháng 8 2021

a, Với \(m\ne2\)

d đi qua A(0;5) <=> \(m=5\)(tm)

b, (d1) : y = 2x + 3 nhé, mình đặt tên luôn ><

d // d1 <=> \(\hept{\begin{cases}m-2=2\\m\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\m\ne3\end{cases}}\Leftrightarrow m=4\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) song song với nhau thì \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2m = 2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2:2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\ - 5 \ne 1\end{array} \right.\left( {tm} \right)\)

Vậy \(m = 1\) thì hai đường thẳng \(y = 2mx - 5\) và \(y = 2x + 1\) song song với nhau.

b) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) cắt nhau thì \(a \ne a' \Rightarrow 2m \ne 2 \Leftrightarrow m \ne 2:2 \Leftrightarrow m \ne 1\). 

31 tháng 12 2023

ĐKXĐ: m ≠ 0 và m ≠ 3/2

a) Đồ thị hai hàm số đã cho là hai đường thẳng song song khi:

m = 3 - 2m

m + 2m = 3

3m = 3

m = 1 (nhận)

Vậy m = 1 thì đồ thị hai hàm số đã cho là hai đường thẳng song song

b) Đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau khi

m ≠ 3 - 2m

m + 2m ≠ 3

3m ≠ 3

m ≠ 1

Vậy m ≠ 0; m ≠ 1 và m ≠ 3/2 thì đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau

a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)

=>\(m+1=-\dfrac{1}{2}\)

=>\(m=-\dfrac{3}{2}\)

b: Thay x=2 vào y=x+3, ta được:

\(y=2+3=5\)

Thay x=2 và y=5 vào (d), ta được:

\(2\left(m+1\right)-5=5\)

=>2(m+1)=10

=>m+1=5

=>m=5-1=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)

=>A(0;-5)

\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)

Tọa độ B là:

\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)

=>\(B\left(\dfrac{5}{m+1};0\right)\)

\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)

Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)

Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)

=>\(2\left|m+1\right|=5\)

=>|m+1|=5/2

=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)

 

16 tháng 12 2023

Gọi hàm số cần tìm có dạng là y=ax+b

Vì đồ thị hàm số y=ax+b song song với đường thẳng y=2x-1 nên ta có:

\(\left\{{}\begin{matrix}a=2\\b\ne-1\end{matrix}\right.\)

Vậy: y=2x+b

Thay x=1 vào y=3x+2, ta được:

\(y=3\cdot1+2=5\)

Thay x=1 và y=5 vào y=2x+b, ta được:

\(b+2\cdot1=5\)

=>b+2=5

=>b=3

Vậy: hàm số cần tìm là y=2x+3