Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: m=-2
BPT trở thành \(\left(-2+2\right)x^2+2\left(-2+2\right)x-2+4< =0\)
=>2<=0(loại)
TH2: m<>-2
\(\text{Δ}=\left(2m+4\right)^2-4\left(m+2\right)\left(m+4\right)\)
\(=4m^2+16m+16-4m^2-24m-32=-8m-16\)
Để BPT có nghiệm thì\(\left\{{}\begin{matrix}-8m-16< =0\\m+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=-2\\m< -2\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
TH1: m=4
BPT sẽ là 5x+7<=0
hya x<=-7/5(loại)
TH2: m<>4
\(\text{Δ}=\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)\)
\(=m^2+2m+1-\left(4m-16\right)\left(2m-1\right)\)
\(=m^2+2m+1-8m^2+4m+32m-16\)
\(=-7m^2+38m-15\)
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}-7m^2+38m-15< 0\\m-4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7m^2-38m+15>0\\m>4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{3}{7}\right)\cup\left(5;+\infty\right)\\m>4\end{matrix}\right.\Leftrightarrow m\in\left(5;+\infty\right)\)
Xét \(\left(m-3\right)x^2+\left(m+2\right)x-4>0\)
Để BPT đúng với mọi x thì:
\(\left\{{}\begin{matrix}m-3>0\\\Delta=\left(m+2\right)^2+16\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\m^2+20m-44< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\-22< m< 2\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Với với mọi \(m\in R\) thì BPT đã cho luôn có nghiệm