Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)
Ta có:
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)
Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-3x-4< 0\\\left(m-1\right)x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(x-4\right)< 0\\\left(m-1\right)x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\\left(m-1\right)x-2>0\end{matrix}\right.\left(1\right)\)
TH1: \(m< 1\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\x< \dfrac{2}{m-1}\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi \(\dfrac{2}{m-1}>-1\Leftrightarrow2< -m+1\Leftrightarrow m< -1\)
\(\Rightarrow m< -1\)
TH2: \(m=1\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\-2>0\end{matrix}\right.\left(vn\right)\)
TH3: \(m>1\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\x>\dfrac{2}{m-1}\end{matrix}\right.\)
\(\dfrac{2}{m-1}< 4\Leftrightarrow4m-4>2\Leftrightarrow m>\dfrac{3}{2}\)
\(\Rightarrow m>\dfrac{3}{2}\)
Vậy \(m< -1;m>\dfrac{3}{2}\)
\(\Delta=\left(m-1\right)^2-4\left(m+2\right)>0\)
\(\Leftrightarrow m^2-6m-7>0\Rightarrow\left[{}\begin{matrix}m>7\\m< -1\end{matrix}\right.\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+2\end{matrix}\right.\)
Để \(x_1< x_2< 1\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\\dfrac{m-1}{2}< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4>0\\m< 3\end{matrix}\right.\)
Kết hợp với (1) ta được: \(m< -1\)
Ta có: \(\Delta=4m^2-8m+1\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\) \(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{2-\sqrt{3}}{2}\\x>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=1-2m\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
Ta lập được HPT \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\2x_1=x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1=1-2m\\x_2=2x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-2m}{3}\\x_2=\dfrac{2-4m}{3}\end{matrix}\right.\)
Kết hợp với (2), ta được:
\(\dfrac{8m^2-12m+2}{9}=m\) \(\Leftrightarrow...\)
Đoạn cuối mình làm sai:
\(\dfrac{3m-7}{m-1}< 1\Leftrightarrow\dfrac{2m-6}{m-1}< 0\Leftrightarrow1< m< 3\).
Nếu vậy thì đáp án đúng là A.
Để pt có 2 nghiệm thì:
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-2\right)^2-\left(m-3\right)\left(m-1\right)=1\ge0\end{matrix}\right.\Leftrightarrow m\ne1\).
Khi đó theo hệ thức Viète: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\).
Do đó \(x_1+x_2+x_1x_2< 1\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)}{m-1}< 1\Leftrightarrow\dfrac{3m-7}{m-1}< 1\Leftrightarrow3m-7< m-1\Leftrightarrow2m< 6\Leftrightarrow m< 3\).
Vậy m là các số thoả mãn m < 3 và m khác 1.
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-3x+2\le0\\mx+1-m\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}1\le x\le2\\x\le\dfrac{-1+m}{m}\end{matrix}\right.\)
để hpt trên có nghiệm thì \(\dfrac{-1+m}{m}\le2\) ĐK m ≠ 0
\(< =>m\ge-1\)
Vậy .....
\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) \(\Rightarrow D_1=\left[1;2\right]\)
Xét \(mx\le m-1\)
- Với \(m=0\) BPT vô nghiệm
- Với \(m>0\Leftrightarrow x\le\dfrac{m-1}{m}\) \(\Rightarrow D_2=(-\infty;\dfrac{m-1}{m}]\)
Hệ có nghiệm khi \(D_1\cap D_2\ne\varnothing\)
\(\Leftrightarrow\dfrac{m-1}{m}\ge1\) \(\Rightarrow\) không tồn tại m thỏa mãn
- Với \(m< 0\Leftrightarrow x\ge\dfrac{m-1}{m}\Rightarrow D_2=[\dfrac{m-1}{m};+\infty)\)
\(D_1\cap D_2\ne\varnothing\Leftrightarrow\dfrac{m-1}{m}\le2\)
\(\Leftrightarrow m-1\ge2m\Rightarrow m\le-1\)
Vậy \(m\le-1\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)