Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\cap B=\left(-3;1\right)\)
\(A\cup B\)=[-5;4]
A\B=[1;4]
\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)
b: C={1;-1;5;-5}
\(B\cap C=\left\{-5;-1\right\}\)
Các tập con là ∅; {-5}; {-1}; {-5;-1}
\(\left\{{}\begin{matrix}A=\left(2;+\infty\right)\\B=\left(m^2-7;+\infty\right)\end{matrix}\right.\) \(\left(m>0\right)\)
Để \(A\)\\(B\) là 1 khoảng có độ dài bằng 6
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7>2\\m^2-7-2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2>9\\m^2=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>3\cup m< -3\\m=5\cup m=-5\end{matrix}\right.\)
\(\Leftrightarrow m=5\cup m=-5\) thỏa mãn điều kiện đề bài
Lời giải:
Biểu diễn tập A,B trên trục số bạn sẽ thấy để $A\cap B$ nhận 1 giá trị duy nhất khi:
\(\left[\begin{matrix} m^2+1=3m-1\\ -3=4(\text{vô lý})\end{matrix}\right.\Rightarrow m^2-3m+2=0\Leftrightarrow (m-1)(m-2)=0\)
\(\Rightarrow \left[\begin{matrix} m=1\\ m=2\end{matrix}\right.\)
Thử lại thấy $m=2$ không thỏa mãn vì khi đó $3m-1>4$
Vậy có 1 giá trị nguyên của $m$ thỏa mãn
Đáp án C
Lời giải:
Biểu diễn tập A,B trên trục số bạn sẽ thấy để $A\cap B$ nhận 1 giá trị duy nhất khi:
\(\left[\begin{matrix} m^2+1=3m-1\\ -3=4(\text{vô lý})\end{matrix}\right.\Rightarrow m^2-3m+2=0\Leftrightarrow (m-1)(m-2)=0\)
\(\Rightarrow \left[\begin{matrix} m=1\\ m=2\end{matrix}\right.\)
Thử lại thấy $m=2$ không thỏa mãn vì khi đó $3m-1>4$
Vậy có 1 giá trị nguyên của $m$ thỏa mãn
Đáp án C
Để A giao B khác rỗng thì \(7-4m< =4-m\)
=>-3m<=-3
=>m>=1
=>Chọn A
Đáp án D