Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo câu trả lời của anh Lâm
https://hoc24.vn/cau-hoi/.334447965337
Hiện tại mới nghĩ được câu b thôi
b/ \(u_1=\dfrac{1}{2};u_2=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3};u_3=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}...\)
Nhận thấy \(u_n=\dfrac{n}{n+1}\) , ta sẽ chứng minh bằng phương pháp quy nạp
\(n=k\Rightarrow u_k=\dfrac{k}{k+1}\)
Chứng minh cũng đúng với \(\forall n=k+1\)
\(\Rightarrow u_{k+1}=\dfrac{k+1}{k+2}\)
Ta có: \(u_{k+1}=\dfrac{1}{2-u_k}=\dfrac{1}{2-\dfrac{k}{k+1}}=\dfrac{k+1}{k+2}\)
Vậy biểu thức đúng với \(\forall n\in N\left(n\ne0\right)\)
\(\Rightarrow limu_n=lim\dfrac{n}{n+1}=lim\dfrac{1}{1+\dfrac{1}{n}}=1\)
Trước hết ta chứng minh \(0< u_n\le1+\sqrt{2}\):
Ta thấy: \(0< u_1=2\le1+\sqrt{2}\)
Giả sử điều này đúng đến \(0< u_k\le1+\sqrt{2}\)
Ta có: \(u_{k+1}=\dfrac{3u_k+1}{u_k+1}>0\)
Lại có: \(u_{k+1}=\dfrac{3u_k+1}{u_k+1}=3-\dfrac{2}{u_k+1}\le3-\dfrac{2}{1+\sqrt{2}}\le3-1=2\le1+\sqrt{2}\)
\(\Rightarrow0< u_{k+1}\le1+\sqrt{2}\)
Theo nguyên lí quy nạp, ta được: \(0< u_n\le1+\sqrt{2}\)
Khi đó ta có:
\(u_{n+1}-u_n=\dfrac{3u_n+1}{u_n+1}-u_{n\text{}}\)
\(=\dfrac{3u_n+1-u_n^2-u_n}{u_n+1}\)
\(=\dfrac{-u_n^2+2u_n+1}{u_n+1}\)
\(=-\dfrac{\left(u_n-1-\sqrt{2}\right)\left(u_n-1+\sqrt{2}\right)}{u_n+1}\ge0\)
\(\Rightarrow u_{n+1}\ge u_n\)
\(\Rightarrow\) Dãy tăng.
\(u_n:\left\{{}\begin{matrix}u_1=1\\u_{n+1}=3u_n+2n-1\left(1\right)\end{matrix}\right.\)
Đặt \(limu_n=a\Rightarrow limu_{n+1}=a\)
\(\left(1\right)\Rightarrow a=3a+2n-1\)
\(\Rightarrow a=\dfrac{1-2n}{2}\)
\(\Rightarrow limu_n=\dfrac{1-2n}{2}\)
\(\Rightarrow lim\dfrac{u_n}{3^n}=lim\dfrac{1-2n}{2.3^n}=0\)
Quá sai.