\(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=u_n^2-3u_n+4\end{matrix}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2022

1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)

+) CM \(u_n>2\) (n thuộc N*)

n=1 : u1= 5/2 > 2 (đúng)

Giả sử n=k, uk > 2 (k thuộc N*)

Ta cần CM n = k + 1. Thật vậy ta có:

\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)

Vậy un > 2 (n thuộc N*)        (2)

Từ (1) (2) => un+1 - u> 0, hay un+1 > un

=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)

 

2) \(2u_{n+1}=u^2_n-2u_n+4\)

\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)

\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)

\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)

\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)

\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)

\(=2-\dfrac{1}{u_{n+1}-2}\)

\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)

NV
5 tháng 3 2022

\(u_{n+1}=\dfrac{u_n}{u_n+1}\Rightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}+1\)

Đặt \(\dfrac{1}{u_n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{u_1}=1\\v_{n+1}=v_n+1\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSC với công sai \(d=1\Rightarrow v_n=v_1+\left(n-1\right).1=n\)

\(\Rightarrow u_n=\dfrac{1}{n}\)

\(\Rightarrow u_n+1=\dfrac{n+1}{n}\)

\(\lim\dfrac{2014\left(\dfrac{2}{1}\right)\left(\dfrac{3}{2}\right)\left(\dfrac{4}{3}\right)...\left(\dfrac{n+1}{n}\right)}{2015n}=\lim\dfrac{2014\left(n+1\right)}{2015n}=\dfrac{2014}{2015}\)

5 tháng 3 2022

https://hoc24.vn/cau-hoi/giai-phuong-trinhleft3-4sin2xrightleft3-4sin23xright1-2cos10x.4916575957961

Giúp mik bài này với ạ

NV
22 tháng 9 2019

Dãy số đã cho hiển nhiên là dãy dương

\(u_3=2>1\Rightarrow\) dự đoán dãy trên là dãy tăng hay \(u_{n+1}>u_n\) \(\forall n\ge2\)

Với \(n=2\) ta có \(u_3>u_2\) (đúng)

Giả thiết cũng đúng với \(n=k\) hay \(u_{k+1}>u_k\)

Ta cần chứng minh \(u_{k+1}>u_{k+1}\)

Thật vậy, \(u_{k+2}=\sqrt{u_{k+1}}+\sqrt{u_k}>\sqrt{u_k}+\sqrt{u_{k-1}}=u_{k+1}\)

Mặt khác \(u_n=\sqrt{u_{n-1}}+\sqrt{u_{n-2}}< \sqrt{u_n}+\sqrt{u_n}=2\sqrt{u_n}\)

\(\Rightarrow u_n^2< 4u_n\Rightarrow u_n< 4\)

\(\Rightarrow\) Dãy số tăng và bị chặn trên nên nó có giới hạn

Gọi giới hạn của dãy số là \(a\Rightarrow lim\left(u_n\right)=lim\left(u_{n-1}\right)=lim\left(u_{n+1}\right)=a\)

Từ biểu thức: \(u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}}\)

Lấy giới hạn 2 vế: \(\Rightarrow a=\sqrt{a}+\sqrt{a}\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=4\end{matrix}\right.\)

Vậy \(lim\left(u_n\right)=4\)

17 tháng 2 2020

ta có : \(u_n=\frac{1+2^m}{2^m}\Rightarrow lim\left(u_n\right)=lim\left(\frac{1+2^m}{2^m}\right)=lim\left(1+\frac{1}{2^m}\right)=1\)

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

NV
18 tháng 9 2020

\(u_3=u_2^2-u_2+2=4\)

\(S_1=1=\left(2-1\right)^2=\left(u_2-1\right)^2\)

\(S_2=2.5-1=9=\left(4-1\right)^2=\left(u_3-1\right)^2\)

Dự đoán \(S_n=\left(u_{n+1}-1\right)^2\)

Ta sẽ chứng minh bằng quy nạp:

- Với \(n=1;2\) đúng (đã kiểm chứng bên trên với \(S_1;S_2\))

- Giả sử đẳng thức đúng với \(n=k\)

Hay \(S_k=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)-1=\left(u_{k+1}-1\right)^2\)

Ta cần chứng minh:

\(S_{k+1}=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)\left(u_{k+1}^2+1\right)-1=\left(u_{k+2}-1\right)^2\)

Thật vậy:

\(S_{k+1}=\left[\left(u_{k+1}-1\right)^2+1\right]\left(u_{k+1}^2+1\right)-1\)

\(=\left(u_{k+1}^2-2u_{k+1}+2\right)\left(u_{k+1}^2+1\right)-1\)

\(=\left(u_{k+2}-u_{k+1}\right)\left(u_{k+2}+u_{k+1}-1\right)-1\)

\(=u_{k+2}^2-u_{k+2}-u_{k+1}^2+u_{k+1}-1\)

\(=u_{k+2}^2-u_{k+2}+2-u_{k+2}-1\)

\(=\left(u_{k+2}-1\right)^2\) (đpcm)

22 tháng 9 2020

e cảm ơn ạ