Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\)\(x^2+y^2-4x+y+5.\)
\(=\left(x^2-4x+4\right)+\left(y^2+2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A_{min}=\frac{3}{4}\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+\frac{1}{2}\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-\frac{1}{2}\end{cases}}}\)
\(x^2+y^2-4x+y+5=\left(x-2\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow Min=\frac{3}{4}\)Dấu "=" xr \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{1}{2}\end{cases}}}\)
\(P=x^2+2xy+4x+4y+y^2+5\)
\(=\left(x^2+2xy+y^2\right)+4\left(x+y\right)+5\)
\(=\left(x+y\right)^2+4\left(x+y\right)+4+1\)
\(=\left(x+y+2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x+y+2=0\)
Vậy với x + y + 2 = 0 thì Pmin = 1
p = x.x + 2.x.y+ 4.x+4.y+ y.2+5
=> P= x.(x+2+y+4)+y.(4+2) +5
mà giá trị nhỏ nhất là gì ạ?
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
P = 4x(x + y + 1) + y(y + 2) + 5
= 4x2 + 4xy + y2 + 4x + 2y = 5
= (2x + y)2 + 2(2x + y) + 1 + 4
= (2x + y + 1)2 + 4 \(\ge4\)
Dấu "=" xảy ra <=> 2x + y + 1 = 0
=> 2x + y = -1
Vậy Min P = 4 <=> 2x + y = -1