K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

\(A=\)\(x^2+y^2-4x+y+5.\)

\(=\left(x^2-4x+4\right)+\left(y^2+2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A_{min}=\frac{3}{4}\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+\frac{1}{2}\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-\frac{1}{2}\end{cases}}}\)

30 tháng 6 2019

\(x^2+y^2-4x+y+5=\left(x-2\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow Min=\frac{3}{4}\)Dấu "=" xr \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{1}{2}\end{cases}}}\)

8 tháng 11 2016

1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)

Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)

                                        =>     \(x=1\)            =>\(x=y\)

Mình chỉ có thể giúp bạn câu 1 thôi

                                                                                                                                                                                                   

1 tháng 11 2020

Câu 1: 

\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)

\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)

\(\Leftrightarrow x^3-4x-x^3-8=4\)

\(\Leftrightarrow-4x-8=4\)

\(\Leftrightarrow-4x=12\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\)

17 tháng 7 2018

a,<=>   x2-4x+22+y2-8y+42-14

<=> (x2-2x2+22)+(y2-2x4+42)-14

<=> (x-2)2+(y-4)2-14 

Vì (x-2)2+(y-4)2>= 0

=> F >= -14 => MIn F = -14 <=> x=2, y=4

b, <=> (x2+52+(2y)2-4xy+10x-20y) +(y2-2y+1)+2

<=> (x+5-2y )2+(y-1)2+2 

Vì (x+5-2y) 2+(y-1)2 >= 0

=> G >= 2 => Min =2 <=> y=1, x= -3

17 tháng 7 2018

\(F=x^2-4x+y^2-8y+6\)

\(F=\left(x^2-2.2x+2^2\right)+\left(y^2-2.4.y+4^2\right)-14\)

\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y-4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x\)

\(F=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy \(F_{min}=-14\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)

16 tháng 10 2016

Bài 2: Tìm GTNN :​

A= x^2 -2x -4 = x^2 - 2x + 1-1 -4 = (x-1)^2 - 5

A >/ -5

MinA = -5   

B= x^2 -x +5= x^2 -  x + 1/4 - 1/4 +5 = (x-1/2)^2 + 19/4 

B >/  19/4 

MinB = 19/4

C= 4x^2 +2x -9= (2x)^2 + 2x + 1/4 - 1/4 -9 = (2x+1/2)^2 - 37/4 

C >/ -37/4

MinC= -37/4 

\(D=2x^2-4x+7=\left(\sqrt{2}x\right)^2-2\cdot\sqrt{2}x\cdot\sqrt{2}+2-2+7=\left(\sqrt{2}x-\sqrt{2}\right)^2+5\)

D >/ 5

MinD = 5

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn ko làm như vậy

13 tháng 7 2019

\(A=-x^2-4x-2\)

\(\Leftrightarrow-A=x^2+4x+2\)

\(\Leftrightarrow-A=x^2+4x+4-2\)

\(\Leftrightarrow-A=\left(x+2\right)^2-2\)

Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-2\ge-2\)hay \(-A\ge-2\)

\(\Rightarrow A\le2\)

Vậy GTLN của A là 2\(\Leftrightarrow x=-2\)

4 tháng 8 2021

còn cách làm khác không ạ?

 

13 tháng 8 2021

đề có thiếu không vậy?

13 tháng 8 2021

không ạ.

 

20 tháng 10 2021

\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) không xảy ra