Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = (x-1).(x+2).(x+3).(x+6)
= (x2 + 5x - 6).(x2 + 5x + 6)
= (x2 + 5x)2 + 6x.(x2+5x)-6(x2 + 5x) - 36
= (x2 + 5x)2 - 36 \(\ge\) -36 với mọi x
Vậy D có GTNN = - 36 khi x2 + 5x = 0
hay x = 0; x = 5
A = x2 - 2x + y2 + 4y + 8
= (x2 - 2x + 1) + (y2 + 2.2y + 4) + 3
= (x-1)2 + (y+2)2 + 3 \(\ge\) 3 với mọi x,y
Vậy A có GTNN = 3
C = x2 - 4x + y2 - 8y + 6
= (x2 - 4x + 4) + (y2 - 8y + 16) - 12
= (x-2)2 + (y-4)2 - 12 \(\ge\) -12 với mọi x;y
Vậy C có GTNN = -12
B = 2x2 - 4x + 10
= x2 + (x2 - 4x + 4) + 6
= x2 + (x-2)2 + 6 \(\ge\) 6 với mọi x
Vậy B có GTNN = 6
Tìm GTNN của biểu thức sau: a) A= x^2-2x+y^2+4y+8 b) B= x^2-4x+y^2-8y+6 c) C= x^-4xy+5y^2+10x-22y+28
a: \(A=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=1 và y=-2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)
Dấu '=' xảy ra khi x=2 và y=4
a) \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x\right)^2-6^2\)
\(A=\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow Amin=-36\Leftrightarrow x^2+5x=0\)
\(\Rightarrow x\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b) \(B=x^2-2x+y^2+4y+8\)
\(B=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\) với mọi x
\(\left(y+2\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)
\(\Rightarrow Bmin=3\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
c) \(C=x^2-4x+y^2-8y+6\)
\(C=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(C=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Vì \(\left(x-2\right)^2\ge0\) với mọi x
\(\left(y-4\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) với mọi x,y
\(\Rightarrow Cmin=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
a) \(A=x^2+6x+11\)
\(A=x^2+6x+9+2\)
\(A=\left(x+3\right)^2+2\)
Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)
Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy: \(Min_A=2\) tại \(x=-3\)
b) \(B=4x-x^2+1\)
\(B=-x^2+4x-4+5\)
\(B=-\left(x-2\right)^2+5\)
\(B=5-\left(x-2\right)^2\)
Có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow5-\left(x-2\right)^2\le5\)
Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Max_B=5\) tại \(x=2\)
2:
a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)
\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)
b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-1\right)\)
c: \(=\left(y^2+10y+25\right)-9z^2\)
\(=\left(y+5\right)^2-\left(3z\right)^2\)
\(=\left(y+5+3z\right)\left(y+5-3z\right)\)
d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)
1:
a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)
b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)
\(=2y\left(5y-6\right)+4\left(5y-6\right)\)
\(=2\left(5y-6\right)\left(y+2\right)\)
c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)
\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)
\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)
d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)
\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)
\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)
\(=2y\left(x+y\right)\left(-x-7y\right)\)
Bài 1
a) x(3 - 4x) + 5(3 - 4x)
= (3 - 4x)(x + 5)
b) 2y(5y - 6) - 4(6- 5y)
= 2y(5y - 6) + 4(5y - 6)
= (5y - 6)(2y + 4)
= 2(5y - 6)(y + 2)
c) 27(x - 2)³ - 3x(2 - x)²
= 27(x - 2)³ - 3x(x - 2)²
= 3(x - 2)²[9(x - 2) - x]
= 3(x - 2)²(9x - 18 - x)
= 3(x - 2)²(8x - 18)
= 6(x - 2)²(4x - 9)
d) 6y(x² - y²) - 8y(x + y)²
= 6y(x - y)(x + y) - 8y(x + y)²
= 2y(x + y)[3(x - y) - 4(x + y)]
= 2y(x + y)(3x - 3y - 4x - 4y)
= 2y(x + y)(-x - 7y)
= -2y(x + y)(x + 7y)