Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\left|2sin^2x-sinx-1\right|-2sinx\)
Đặt \(sinx=t\in\left[-1;1\right]\)
\(\Rightarrow y=f\left(t\right)=\left|2t^2-t-1\right|-2t\)
BBT cho \(f\left(t\right)\) trên \(\left[-1;1\right]\):
Từ BBT ta thấy \(y_{max}=4\) khi \(sinx=-1\); \(y_{min}=-2\) khi \(sinx=1\)
Đặt \(sinx=t\left(t\in\left[-1;1\right]\right)\)
\(y=\left|sinx+cos2x\right|=\left|2sin^2x-sinx-1\right|\)
\(\Leftrightarrow y=\left|f\left(t\right)\right|=\left|2t^2-t-1\right|\)
\(f\left(-1\right)=2\Rightarrow y=2\)
\(f\left(1\right)=0\Rightarrow y=0\)
\(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\Rightarrow y=\dfrac{9}{8}\)
\(\Rightarrow y_{min}=0;y_{max}=2\)
\(y=\sqrt{3}cos2x+2sinxcosx-2\)
\(=\sqrt{3}cos2x+sin2x-2\)
Ta có: \(\left|\sqrt{3}cos2x+sin2x\right|\le\sqrt{\left(\sqrt{3}\right)^2+1^2}=2\)
Do đó \(-2\le\sqrt{3}cos2x+sin2x\le2\)
\(\Leftrightarrow-4\le\sqrt{3}cos2x+sin2x-2\le2\).
Ta có: \(\left|\sqrt{3}cosx-sinx\right|\le\sqrt{\left(\sqrt{3}\right)^2+\left(-1\right)^2}=2\)
Do đó \(-2\le\sqrt{3}cosx-sinx\le2\)
\(y=1-2\sin^2x-\sin x+3=-2\sin^2x-\sin x+4\)
\(\sin x=t;t\in\left[-1;1\right]\)
Xét hàm f(t) trên [-1;1]
\(f\left(-1\right)=-2+1+4=3\)
\(f\left(1\right)=-2-1+4=1\)
\(f\left(-\frac{1}{4}\right)=-2.\frac{1}{16}+\frac{1}{4}+4=\frac{33}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}y_{max}=\frac{33}{8};"="\Leftrightarrow\sin x=-\frac{1}{4}\Rightarrow x=...\\y_{min}=1;"="\Leftrightarrow\sin x=1\end{matrix}\right.\)
\(y=2\left(\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x\right)=2sin\left(2x+\dfrac{\pi}{3}\right)\)
\(-1\le sin\left(2x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=-1\Rightarrow x=-\dfrac{5\pi}{12}+k\pi\)
\(y_{max}=2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=1\Rightarrow x=\dfrac{\pi}{12}+k\pi\)
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
Khi cho A td KOH thu được ancol đồng đẳng. => Các ancol là no đơn chức mạch hở.
Gọi CT các este: \(C_mH_{2m+1}COOC_{m'}H_{2m'+1};C_nH_{2n-1}COOC_{n'}H_{2n'-1};C_qH_{2q}\left(COOC_{q'}H_{2q'}\right)_2\)
TN2: Đốt hỗn hợp 3 muối.
Đặt \(n_{K_2CO_3}=x;n_{H_2O}=y\left(mol\right)\)
\(BTNT.K\Rightarrow n_{COOK^-}=2n_{K_2CO_3}=2x\left(mol\right)\\ BTNT.O\Rightarrow2n_{COOK^-}+2n_{O_2}=3n_{K_2CO_3}+2n_{CO_2}+n_{H_2O}\\ \Rightarrow x-y=0,3\\ BTKL\Rightarrow m_{M'}+m_{O_2}=m_{K_2CO_3}+m_{CO_2}+m_{H_2O}\\ \Rightarrow138x+18y=99,9\\ \Rightarrow\left\{{}\begin{matrix}x=0,675\\y=0,375\end{matrix}\right.\)
H2 muối gồm: \(C_mH_{2m+1}COOK\text{ }a\text{ }mol;C_nH_{2n-1}COOK\text{ }b\text{ }mol;C_qH_{2q}\left(COOK\right)_2\text{ }c\text{ }mol\)
\(\Rightarrow n_A=a+b+c=0,85\\ BTNT.C\Rightarrow\left(m+1\right)a+\left(n+1\right)b+\left(q+2\right)c=n_{K_2CO_3}+n_{CO_2}=1,75\\ \Rightarrow ma+nb+qc=0,4\\ BTNT.K\Rightarrow a+b+2c=1,35\\ BTNT.H\Rightarrow\left(2m+1\right)a+\left(2n-1\right)b+2qc=2n_{H_2O}=0,75\\ \Rightarrow a-b=-0,05\\ \Rightarrow\left\{{}\begin{matrix}a=0,15\\b=0,2\\c=0,5\end{matrix}\right.\\ \Rightarrow0,15m+0,2n+0,5q=0,4\)
Do \(m;q\ge0\Rightarrow n\le\frac{0,4}{0,2}=2\)
Mà \(n\ge2\Rightarrow n=2\Rightarrow m=q=0\)
\(\text{c) }y=2sin^2x+4\sqrt{3}sinx\cdot cosx+6cos^2x+1\\ =\left(1-cos2x\right)+2\sqrt{3}sin2x+3\left(cos2x+1\right)+1\\ =2cos2x+2\sqrt{3}sin2x+5\)
Đặt \(t=2cos2x+2\sqrt{3}sin2x\)
\(\Rightarrow t^2\le\left[2^2+\left(2\sqrt{3}\right)^2\right]\left(cos^22x+sin^22x\right)=16\\ \Rightarrow-4\le t\le4\\ \Rightarrow1\le y\le9\\ \)
Vậy \(Min\text{ }y=1\Leftrightarrow sin2x=-\frac{1}{2}\)
\(Max\text{ }y=9\Leftrightarrow sin2x=\frac{1}{2}\)
\(y=\sqrt{3}cosx-sinx=2\left(\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\right)=2cos\left(x+\dfrac{\pi}{6}\right)\)
Vì \(cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{3}cosx-sinx\in\left[-2;2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=\pi+k2\pi\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
\(y_{max}=2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\)
\(y=\left|sinx-\left(1-2sin^2x\right)\right|=\left|2sin^2x+sinx-1\right|\)
Đặt \(t=sinx;-1\le t\le1\)
\(\Rightarrow y=\left|2t^2+t-1\right|\)
Đặt \(f\left(t\right)=2t^2+t-1;-1\le t\le1\)
Vẽ BBT của \(f\left(t\right)=2t^2+t-1;-1\le t\le1\) sẽ tìm được \(f\left(t\right)_{min}=-\dfrac{9}{8};f\left(t\right)_{max}=2\)
\(\Rightarrow0\le\left|f\left(t\right)\right|\le2\)
\(\Leftrightarrow0\le y\le2\)
\(\Rightarrow y_{min}=0\Leftrightarrow2sin^2x+sinx-1=0\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(y_{max}=2\Leftrightarrow t=1\Leftrightarrow sinx=1\)