Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D ez nhất :v
\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)
Đẳng thức xảy ra khi x = 1 và y = -2
\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)
\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1
Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$
$=(x^2+2xy+y^2)+2x+y^2+4y+2021$
$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$
$=(x+y+1)^2+(y+1)^2+2019\geq 2019$
Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$
$\Leftrightarrow (x,y)=(0,-1)$
\(G=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y\)
\(=\left[x^2+2x\left(y-z\right)+\left(y-z\right)^2\right]+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-5\)
\(=\left(x+y-z\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-5\ge-5\)
\(minG=-5\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(G=x^2-2xy+2y^2+2x-10y+17\\ \\ =x^2-2xy+y^2+y^2+2x-2y-8y+1+16\\ \\ =\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\\ \\ =\left(x-y+1\right)^2+\left(y-4\right)^2\)
Do \(\left(x-y+1\right)^2\ge0\forall x;y\)
\(\left(y-4\right)^2\ge0\forall y\)
\(\Rightarrow G=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy \(G_{\left(Min\right)}=0\) khi \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
\(H=x^2+2xy+y^2-2x-2y\\ =x^2+2xy+y^2-2x-2y+1-1\\ =\left(x^2+y^2+1+2xy-2x-2y\right)-1\\ \\ =\left(x+y-1\right)^2-1\)
Do \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left(x+y-1\right)^2-1\ge-1\forall x;y\)
Dấu \("="\) xảy ra khi:
\(\left(x+y-1\right)^2=0\\ \Leftrightarrow x+y-1=0\\ \Leftrightarrow x+y=1\)
Vậy \(H_{\left(Min\right)}=-1\) khi \(x+y=1\)
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Đặt `A=2x^2+2y^2+2xy-4x+4y+2021`
`<=>2A=4x^2+4y^2+4xy-8x+8y+4042`
`<=>2A=4x^2+4xy+y^2-8x-4y+3y^2+12y+4042`
`<=>2A=(2x+y)^2-4(2x+y)+4+3y^2+12y+12+4026`
`<=>2A=(2x+y-2)^2+3(y+2)^2+4026>=4026`
`=>A>=2013`
Dấu "=" xảy ra khi `y=-2,x=(2-y)/2=2`
Cảm ơn bạn nhiều nha