K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2022

A=7x23x=(x2+3x+\(\dfrac{9}{4}\))+ \(\dfrac{37}{4}\)
=(x-\(\dfrac{3}{2}\))2+ \(\dfrac{37}{4}\)do:(x-\(\dfrac{3}{2}\)

)
2
0
=>(x-\(\dfrac{3}{2}\)
)
2
+ \(\dfrac{37}{4}\)

\(\dfrac{37}{4}\)


=>A\(\dfrac{37}{4}\)
A=7−x2−3x=−(x2+3x+94)+374=−(x+32)2+374do:−(x+32)2≤0=>−(x+32)2+374≤374=>A≤3

Dấu = xảy ra khi x-\(\dfrac{3}{2}\)

=0=>x=\(\dfrac{3}{2}\)



x+32=0=>x=−3

vậy A max =\(\dfrac{37}{4}\)
374 đạt được khi x=\(\dfrac{3}{2}\)
 

19 tháng 8 2022

:>

 

20 tháng 11 2019

1) \(A=x\left(2x-3\right)=2x^2-3x\)

\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1,5}{\sqrt{2}}+\frac{2,25}{2}-1,125\)

\(=\left(\sqrt{2}x-\frac{1,5}{\sqrt{2}}\right)^2-1,125\ge-1,125\)

Vậy \(A_{min}=-1,125\Leftrightarrow\sqrt{2}x-\frac{1,5}{\sqrt{2}}=0\)

\(\Leftrightarrow x=\frac{3}{4}\)

20 tháng 11 2019

2) \(21^{10}-1=\left(21^5+1\right)\left(21^5-1\right)\)

Dễ thấy 215 - 1 có tận cùng  00

\(\Rightarrow21^5-1⋮100\)

Ta có 215 có tận cùng bằng 1 nên 215 + 1 chia hết cho 2 

\(\Rightarrow\left(21^5+1\right)\left(21^5-1\right)⋮200\)

hay \(21^{10}-1⋮200\)

6 tháng 1 2020

a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)

Ta thấy \(x^2\ge0\forall x\)

=> \(x^2+4\ge4\forall x\)

=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)

=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)

\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)

30 tháng 7 2017

giúp vs

30 tháng 7 2017

mấy bài nầy dễ thôi. chỉ cần áp dụng các hằng đẳng thức là đc!

7 tháng 6 2017

\(3x^2-6x+1\)

\(=3\left(x^2-2x+\frac{1}{3}\right)\)

\(=3\left(x-1\right)^2-\frac{2}{3}\)

vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)

vậy GTNN của biểu thức =2/3

minh tống ơi chắc là sai đấy

7 tháng 6 2017

sai cũng đc cảm ơn bạn nhiều lắm

20 tháng 3 2016

Bạn làm nhiều bài tập rồi quen dần với mấy dạng này ,chứ chỉ ra cách nào thì khó lắm 

Thường thì biến đổi về. Dạng bình phương (cũng có những cách khác nhé)

Ví du:tim giá trị nhỏ nhất của:x^2+2x+2=(x+1)^2+1 lớn hơn hoặc bằng 1 với mọi x thuộc R

20 tháng 3 2016

an may tinh la ra

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

27 tháng 11 2018

\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)

\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)

\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)

\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)

\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)

b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1

6 tháng 10 2016

\(P=\frac{2}{-4x^2+8x-5}=\frac{2}{-\left(4x^2-8x+5\right)}\)

\(=\frac{2}{-\left(4x^2-8x+4+1\right)}\)\(=\frac{2}{-4\left(x+1\right)^2-1}\)

\(\ge\frac{2}{-1}=-2\)\(\Rightarrow P\ge-2\)

Dấu = khi \(x=-1\)

Vậy MinP=-2 khi x=-1

7 tháng 10 2016

Cảm ơn bạn nhiều nha ! :)

4 tháng 9 2020

Ta có : A = x(x + 1)(x2 +  x - 4)

= (x2 + x)(x2 + x - 4)

Đặt x2 + x = t

Khi đó A = t(t - 4)

= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4

 Dấu "=" xảy ra <=> t - 2 = 0

=> t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 + 2x - x - 2 = 0

=> x(x + 2) - (x + 2) = 0

=> (x - 1)(x + 2) = 0

=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)

4 tháng 9 2020

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A <=> t( t - 4 )

      = t2 - 4t

      = ( t2 - 4t + 4 ) - 4

      = ( t - 2 )2 - 4 

      = ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x2 + x - 2 = 0

                             <=> x2 - x + 2x - 2 = 0

                             <=> x( x - 1 ) + 2( x - 1 ) = 0

                             <=> ( x - 1 )( x + 2 ) = 0

                             <=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

=> MinA = -4 <=> x = 1 hoặc x = -2