Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=9x^2+18x-20\)
\(\Leftrightarrow A=\left(3x\right)^2+2.3x.3+9-29\)
\(\Leftrightarrow A=\left(3x+3\right)^2-29\le-29\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow\left(3x+3\right)^2=0\Leftrightarrow3x+3=0\Leftrightarrow3x=-3\Leftrightarrow x=-1\)
Vậy Min A là : \(-29\Leftrightarrow x=-1\)
\(B=m^2+10m+1\)
\(\Leftrightarrow B=m^2+2.m.5+25-24\)
\(\Leftrightarrow B=\left(m+5\right)^2-24\le-24\forall m\)
Dấu \("="\) xảy ra
\(\Leftrightarrow\left(m+5\right)^2=0\Leftrightarrow m+5=0\Leftrightarrow m=-5\)
Vậy Min B là : -24 \(\Leftrightarrow m=-5\)
\(C=25x^2-20x+30\)
\(\Leftrightarrow C=\left(5x\right)^2-2.5x.2+4+26\)
\(\Leftrightarrow C=\left(5x-2\right)^2+26\le26\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow\left(5x-2\right)^2=0\Leftrightarrow5x-2=0\Leftrightarrow5x=2\Leftrightarrow x=\dfrac{2}{5}\)
Vậy Min C là : 26 \(\Leftrightarrow x=\dfrac{2}{5}\)
a)Đặt \(A=3x^2-x+1\)
\(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)
\(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)
Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)
Vậy Min A = \(\frac{11}{12}\) khi x=1/6
b)Tương tụ
\(a)A = x^2 - 20x + 101\)
\(= x^2 - 2.x.10 + 100 + 1\\
= (x - 10)^2 + 1 ≥1\)
Vậy \(min_A=1\Leftrightarrow x=10\)
\(b)B=x^2-x+1\\ =\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1\\ =\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(min_B=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(c)C=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{4}\right]=2\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right]=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)Vì: \(2\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu ''='' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy\( min_C=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
Sửa đề: x=19
x=19 nên x+1=20
\(A=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2018\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2018\)
=x-2018
=19-2018=-1999
1) tìm GTNN của: C = x2 + y2 - 8x + 4y + 27
2) tìm GTLN của:
a) B= -3x2 + 2x -1
b) C= -5x2 + 20x -49
1 ) \(C=x^2+y^2-8x+4y+27\)
\(=\left(x^2-8x+16\right)+\left(y^2-4y+4\right)+7\)
\(=\left(x-4\right)^2+\left(y-2\right)^2+7\ge7\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
Vậy GTNN của C là : \(7\Leftrightarrow x=4;y=2\)
2 ) a ) \(B=-3x^2+2x-1\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)
\(=-3\left(x^2-2x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{2}{9}\right]\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\le-\dfrac{2}{3}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy GTLN của B là : \(-\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{3}\)
b ) \(C=-5x^2+20x-49\)
\(=-5\left(x^2-4x+\dfrac{49}{5}\right)\)
\(=-5\left(x^2-4x+4+\dfrac{29}{5}\right)\)
\(=-5\left[\left(x-2\right)^2+\dfrac{29}{5}\right]\)
\(=-5\left(x-2\right)^2-29\le-29\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTLN của C là : \(-29\Leftrightarrow x=2\)
Để Amin.
=>20x^2-20x min.
=>>x^2-x min.
Mà nếu x âm =>x^2 dương và -x sẽ thành cộng với 1 số dương.
=>x ko âm.
=>x =1 hoặc x=0
Thử lại:
Với 2 số trên A đểu =1.
Vậy........
\(A=20x^2-20x+1=20\left(x^2-x+\frac{1}{4}\right)-20.\frac{1}{4}+1\)
\(=20\left(x-\frac{1}{2}\right)^2-4\ge-4\)( Vì \(20\left(x-\frac{1}{2}\right)^2\ge0\))
Vậy \(MinA=-4\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)