Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-20x+101=x^2-2.10x+100+1\)
\(=\left(x-10\right)^2+1\ge1\)
Vậy \(A_{min}=1\Leftrightarrow x=10\)
b) \(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
VD câu a thôi hơi dài đấy
\(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)( biến đổi về dạng hằng đẳng thức )
\(A=\left(x-3\right)^2+2\)
Mà ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge2\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy,..........
\(B=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1\ge1\)
B min = 1\(\Leftrightarrow x=10\)
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
b: \(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu '=' xảy ra khi x=0 hoặc x=-5
a: \(A=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
1) tìm GTNN của: C = x2 + y2 - 8x + 4y + 27
2) tìm GTLN của:
a) B= -3x2 + 2x -1
b) C= -5x2 + 20x -49
1 ) \(C=x^2+y^2-8x+4y+27\)
\(=\left(x^2-8x+16\right)+\left(y^2-4y+4\right)+7\)
\(=\left(x-4\right)^2+\left(y-2\right)^2+7\ge7\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
Vậy GTNN của C là : \(7\Leftrightarrow x=4;y=2\)
2 ) a ) \(B=-3x^2+2x-1\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)
\(=-3\left(x^2-2x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{2}{9}\right]\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\le-\dfrac{2}{3}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy GTLN của B là : \(-\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{3}\)
b ) \(C=-5x^2+20x-49\)
\(=-5\left(x^2-4x+\dfrac{49}{5}\right)\)
\(=-5\left(x^2-4x+4+\dfrac{29}{5}\right)\)
\(=-5\left[\left(x-2\right)^2+\dfrac{29}{5}\right]\)
\(=-5\left(x-2\right)^2-29\le-29\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTLN của C là : \(-29\Leftrightarrow x=2\)
a) \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì: \(\left(x+1\right)^2\ge0\) , với mọi x
=> \(\left(x+1\right)^2+1\ge1\)
Vậy GTNN của bt đã cho là 1 khi \(x+1=0\Leftrightarrow x=-1\)
b) \(4x^2-x+1=4\left(x^2-\frac{x}{4}+\frac{1}{64}\right)+\frac{15}{16}=4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\)
Vì: \(4\left(x-\frac{1}{8}\right)^2\ge0\), vói mọi x
=> \(4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
Vậy GTNN của bt trên là \(\frac{15}{16}\) khi \(x=\frac{1}{8}\)
c) \(3x^2-2x+1=3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{2}{3}=3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\)
Vì: \(3\left(x-\frac{1}{3}\right)^2\ge0\), với mọi x
=> \(3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Vậy GTNN của bt đã cho là \(\frac{2}{3}\) khi \(x=\frac{1}{3}\)
C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2
C2. ( x + 2 )2 = ( 2x - 1 )2
<=> ( x + 2 )2 - ( 2x - 1 )2 = 0
<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0
<=> [ 3x + 1 ][ 3 - x ] = 0
<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)
b) ( x + 2 )2 - x + 4 = 0
<=> x2 + 4x + 4 - x + 4 = 0
<=> x2 - 3x + 8 = 0
Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x
=> Phương trình vô nghiệm
C3. a) A = x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 , đạt được khi x = 2
b)B = x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy BMin = 3/4, đạt được khi x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
Vậy DMin = 2 , đạt được khi x = y = -1/2
C4. a) ( Cái này tìm được Min k tìm được Max )
A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = -6 , đạt được khi x = 2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9 , đạt được khi x = -1
d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )
C5. a) A = 25x2 - 20x + 7
A = 25x2 - 20x + 4 + 3
A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )
b) B = 9x2 - 6xy + 2y2 + 1
B = ( 9x2 - 6xy + y2 ) + y2 + 1
B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )
c) C = x2 - 2x + y2 + 4y + 6
C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1
C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )
d) D = x2 - 2x + 2
D = x2 - 2x + 1 + 1
D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )
\(a)A = x^2 - 20x + 101\)
\(= x^2 - 2.x.10 + 100 + 1\\ = (x - 10)^2 + 1 ≥1\)
Vậy \(min_A=1\Leftrightarrow x=10\)
\(b)B=x^2-x+1\\ =\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1\\ =\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(min_B=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(c)C=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{4}\right]=2\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right]=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)Vì: \(2\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu ''='' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy\( min_C=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)