Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=3x^2-x+1\)
\(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)
\(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)
Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)
Vậy Min A = \(\frac{11}{12}\) khi x=1/6
b)Tương tụ
\(A=25x^2-20x+7\)
\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)
Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)
\(B=-x^2+2x-2\)
\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)
\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow x=1\)
Vậy \(maxB=-3\Leftrightarrow x=1\)
\(C=9x^2-12x\)
\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)
\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)
Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)
\(D=3-10x^2-4xy-4y^2\)
\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)
\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)
Vậy \(maxD=-3\Leftrightarrow x=y=0\)
\(E=4x-x^2+1\)
\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)
\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)
Dấu " = " xảy ra \(\Leftrightarrow x=2\)
Vậy \(maxE=5\Leftrightarrow x=2\)
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
d) Ta có: \(x^2+12x+39\)
\(=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-6
e) Ta có: \(-x^2-12x\)
\(=-\left(x^2+12x+36-36\right)\)
\(=-\left(x+6\right)^2+36\le36\forall x\)
Dấu '=' xảy ra khi x=-6
f) Ta có: \(4x-x^2+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=1
( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )
a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)
\(=\left(5x-2\right)^2+3\)
Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)
Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)
b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)
Vậy Min = 1 <=> x = 1/3
c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Vậy Max = -1 <=> x = 1
d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)
Vậy Min = 3 <=> x = - 6
e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)
Vậy Max = 36 <=> x = -6 .
f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Vậy Max = 5 <=> x = 2
\(A=4x^2-4xy+5y^2+20x-6y+2044\)
\(=\left(4x^2-4xy+y^2\right)+20x-6y+4y^2+2044\)
\(=\left(2x-y\right)^2+10\left(2x-y\right)+25+\left(4y^2+4y+1\right)+2018\)
\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\ge2018\)
Dấu "=" xảy ra tại \(y=-\frac{1}{2};x=-\frac{11}{4}\)
Ta có \(A=4x^2-4xy+5y^2+20x-6y+2044\)
\(=4x^2-4x\left(y-5\right)+\left(y-5\right)^2+4y^2+4y+1+2018\)
\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\)
Vì...\(\Rightarrow A\ge2018\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+5=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{11}{4}\\y=-\frac{1}{2}\end{cases}}}\)
\(A=x^4-4x^3+9x^2-20+22\\ A=x^4-4x^3+4x^2+5x^2-20x+20+2\\ A=x^2\left(x^2-4x+4\right)+5\left(x^2-4x+4\right)\\ A=\left(x^2+5\right)\left(x-2\right)^2+2\)
Nhận xét:
\(x^2+5>0\\ \left(x-2\right)^2\ge0\\ \Rightarrow\left(x^2+5\right)\left(x-2\right)^2\ge0\\ \Rightarrow A=\left(x^2+5\right)\left(x-2\right)^2+2\ge2\)
Dấu "=" xảy ra khi:
\(\left(x^2+5\right)\left(x-2\right)^2=0\\ \Rightarrow\left(x-2\right)^2=0\left(vì.x^2+5>0\right)\\ \Rightarrow x-2=0\\ x=2\)
Vậy MinA = 2 khi x = 2