\(\sqrt{5x+4}+\sqrt{5y+4}\) với x2+y2=1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :

\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)

\(\Rightarrow a+b-2\le\sqrt{8}-2\)

\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)

8 tháng 4 2019

Do x ; y không âm , \(x^2+y^2=1\)

\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)

\(x,y\ge0\Rightarrow xy\ge0\)

Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)

\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)

\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)

\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)

\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

6 tháng 11 2016

cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q

1) CM: AH.AB=QA.BC

2)CM: BF.BA+CE.CA=BC2

3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn

NV
11 tháng 5 2019

Do \(x^2+y^2=1\Rightarrow0\le x;y\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\end{matrix}\right.\) \(\Rightarrow x+y\ge x^2+y^2=1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4+5x}=a\\\sqrt{4+5y}=b\end{matrix}\right.\) \(\left\{{}\begin{matrix}2\le a;b\le3\\a^2+b^2=8+5\left(x+y\right)\ge13\end{matrix}\right.\)

Do \(2\le a;b\le3\Rightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(a-3\right)\le0\\\left(b-2\right)\left(b-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-5a+6\le0\\b^2-5b+6\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a\ge\frac{a^2+6}{5}\\b\ge\frac{b^2+6}{5}\end{matrix}\right.\)

\(\Rightarrow P=a+b\ge\frac{a^2+6}{5}+\frac{b^2+6}{5}=\frac{a^2+b^2+12}{5}\ge\frac{13+12}{5}=5\)

\(\Rightarrow P_{min}=5\) khi \(\left(a;b\right)=\left(2;3\right)\) và hoán vị hay \(\left(x;y\right)=\left(0;1\right)\) và hoán vị

11 tháng 5 2019

Ủng hộ cách khác

Dễ cm: \(x\ge x^2;y\ge y^2\)

\(P=\sqrt{4+5x}+\sqrt{4+5y}=\sqrt{x+4x+4}+\sqrt{y+4y+4}\ge\sqrt{x^2+4x+4}+\sqrt{y^2+4y+4}=\left|x+2\right|+\left|y+2\right|=x+y+4\ge x^2+y^2+4=1\)"=" khi x;y là hoán vị của (0;1)

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24