K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q

1) CM: AH.AB=QA.BC

2)CM: BF.BA+CE.CA=BC2

3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn

NV
9 tháng 12 2018

ĐKXĐ: \(x\ge3;y\ge1\)

\(\sqrt{x-3}-\sqrt{y-1}+\sqrt[3]{x^2+x+1}-\sqrt[3]{y^2+5y+7}=0\)

\(\Leftrightarrow\dfrac{x-y-2}{\sqrt{x-3}+\sqrt{y-1}}+\dfrac{x^2+x+1-y^2-5y-7}{\sqrt[3]{\left(x^2+x+1\right)}+\sqrt[3]{\left(x^2+x+1\right)\left(y^2+5y+7\right)}+\sqrt[3]{y^2+5y+7}}=0\)

Để cho gọn gàng, ta đặt:

\(\left\{{}\begin{matrix}\sqrt[3]{\left(x^2+x+1\right)}+\sqrt[3]{\left(x^2+x+1\right)\left(y^2+5y+7\right)}+\sqrt[3]{y^2+5y+7}=b>0\\\sqrt{x-3}+\sqrt{y-1}=a>0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x-y-2}{a}+\dfrac{x^2-y^2-4y-4+x-y-2}{b}=0\)

\(\Leftrightarrow\dfrac{x-y-2}{a}+\dfrac{x^2-\left(y+2\right)^2+\left(x-y-2\right)}{b}=0\)

\(\Leftrightarrow\dfrac{x-y-2}{a}+\dfrac{\left(x-y-2\right)\left(x+y+3\right)}{b}=0\)

\(\Leftrightarrow\left(x-y-2\right)\left(\dfrac{1}{a}+\dfrac{x+y+3}{b}\right)=0\)

\(\Leftrightarrow x-y-2=0\) do \(\left\{{}\begin{matrix}x\ge3\\y\ge1\end{matrix}\right.\) \(\Rightarrow x+y+3>0\Rightarrow\dfrac{1}{a}+\dfrac{x+y+3}{b}>0\)

\(\Rightarrow x=y+2\)

Thay vào Q ta được:

\(Q=y^2-\left(y+2\right)^2+3\left(y+2\right)+4\sqrt{y}+4\)

\(\Rightarrow Q=-y+4\sqrt{y}+6=10-\left(y-4\sqrt{y}+4\right)=10-\left(\sqrt{y}-2\right)^2\le10\)

\(\Rightarrow Q_{max}=10\) khi \(\sqrt{y}-2=0\Rightarrow\left\{{}\begin{matrix}y=4\\x=6\end{matrix}\right.\)

9 tháng 12 2018

Nguyễn Việt Lâm Mashiro Shiina Akai Haruma

2 tháng 9 2018

\(x=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{3}+1}+\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(3+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{9-3}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{3+\sqrt{3}+3-\sqrt{3}}{6}=\dfrac{6}{6}=1\)

\(x=\sqrt{2}\)

\(y=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(y\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)

\(y\sqrt{2}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(y\sqrt{2}=\sqrt{7}+1-\sqrt{7}+1\)

\(y\sqrt{2}=2\)

\(y=\dfrac{2}{\sqrt{2}}\)

Thay \(x=\sqrt{2},y=\dfrac{2}{\sqrt{2}}\) vào A ta có:

\(A=\dfrac{\sqrt{2}.\dfrac{2}{\sqrt{2}}-1}{\sqrt{2}+\dfrac{2}{\sqrt{2}}}-\dfrac{1-\sqrt{2}.\dfrac{2}{\sqrt{2}}}{2\sqrt{2}-\dfrac{2}{\sqrt{2}}}\)

\(=\dfrac{2-1}{2\sqrt{2}}-\dfrac{1-2}{\sqrt{2}}\)

\(=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{\sqrt{2}}\)

\(=\dfrac{3\sqrt{2}}{4}\)

Tự kết luận nha

25 tháng 2 2020

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

28 tháng 2 2020

2. \(pt\Leftrightarrow\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\Rightarrow3x-5>0\Rightarrow x>\frac{5}{3}\)

+ \(pt\Leftrightarrow\left(\sqrt{x^2+12}-4\right)-\left(\sqrt{x^2+5}-3\right)-\left(3x-6\right)=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}-\frac{x^2-4}{\sqrt{x^2+5}+3}-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\) (1)

+ \(\forall x>\frac{5}{3}\) ta có: \(\left\{{}\begin{matrix}x+2>0\\\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\end{matrix}\right.\)

\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\) nên từ (1) suy ra:

\(x-2=0\Leftrightarrow x=2\) ( TM )

31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((