K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

11111111

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$

$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$

Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$

DM
30 tháng 1 2018

Kết luận:   GTNN của P là 3/4; P không có GTLN.

Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để   \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.

Ta có  \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).

Nếu \(P=1\) thì (1) trở thành  \(x=0\), phương trình có nghiệm x = 0.

Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi  

                                  \(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)

Vậy tập giá trị của P là   \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)

26 tháng 7 2017

\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)

\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)

Dấu = xảy ra  khi \(x=1\)

28 tháng 3 2018

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

28 tháng 3 2018

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn

2 tháng 4 2018

\(A=\frac{6x^2-2x+1}{x^2}=6-\frac{2}{x}+\frac{1}{x^2}\)

Đặt \(\frac{1}{x}=a\)ta có

\(A=6-2a+a^2=a^2-2a+1+5=\left(a-1\right)^2+5\)

\(\left(a+1\right)^2\ge0\forall a\)

\(\Rightarrow A\ge5\forall a\)

GTNN của A=5 <=>a+1=0 <=>a=-1 =>x=-1

9 tháng 1 2016

\(M=\frac{x^2+x+1}{x^2+2x+1}=\frac{\left(x+1\right)^2-x}{\left(x+1\right)^2}\)

Đặt y=x+1 =>y-1=x ta được: 

\(M=\frac{y^2-y+1}{y^2}=\frac{\frac{y^2-y+1}{y^2}}{\frac{y^2}{y^2}}=1-\frac{1}{y}+\frac{1}{y^2}\)

\(=\left(\frac{1}{2}-\frac{1}{y}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là 3/4 tại 1/2-1/y=0

=>y=2

=>x=y-1=1

 

9 tháng 1 2016

giải đầy đủ giùm 1 tick