K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

\(M=10x^2+5y^2-4x+6x+12xy+15\)

\(\Leftrightarrow M=x^2+9x^2+y^2+4y^2-4x+12xy+6y+9+4+2\)

\(\Leftrightarrow M=\left(y^2+6y+9\right)+\left(4y^2+12xy+9x^2\right)+\left(x^2-4x+4\right)+2\)

\(\Leftrightarrow M=\left(y+3\right)^2+\left(2y+3x\right)^2+\left(x-2\right)^2+2\)

Vì (y+3)^2+(2y+3x)^2+(x-2)^2 > 0\(\forall\) x,y

=>  (y+3)^2+(2y+3x)^2+(x-2)^2 + 2 > 2 với \(\forall\) x,y

Dấu '=' xảy ra khi và chỉ khi 

\(\hept{\begin{cases}\left(y+3\right)^2=0\\\left(2y+3x\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y+3=0\\2y+3x=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-3\\x=2\end{cases}}\)

Vậy Mmin = 2 khi x=2;y=-3

12 tháng 4 2017

\(A=\left(9x^2+12xy+4y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6x+9\right)+4\)

\(A=\left(3x+2y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2+4\)

\(\Rightarrow A\ge4\)(xảy ra dấu "="\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\) )

12 tháng 4 2017

eo biet

1 tháng 11 2020

a) Ta có A = x2 - 2x - 1 = (x2 - 2x + 1) - 2 = (x - 1)2 - 2 \(\ge\) -2 

Dấu "=" xảy ra <=> x - 1 = 0 => x = 1

Vậy Min A = -2 <=> x = 1 

b) Ta có B = 4x2 + 4x + 8 = (4x2 + 4x + 1) + 7 = (2x + 1)2 + 7 \(\ge\)7

Dấu |"=" xảy ra <=> 2x + 1 = 0 => x = -1/2

Vậy Min B = 7 <=> x = -1/2

c) Ta có C = 3x - x2 + 2

                 = -(x2 - 3x - 2)

                = -(x2 - 3x + 9/4 - 9/4 - 2)

                = -[(x - 3/2)2 - 17/4)

                 = -(x - 3/2)2 + 17/4 \(\le\frac{17}{4}\)

Dấu "=" xảy ra <=> x - 3/2 = 0 => x = 3/2

Vậy Max C = 17/4 <=> x = 3/2

d) Ta có D = -x2 - 5x = -(x2 + 5x) = -(x2 + 5x + 25/4 - 25/4) = -(x + 5/2)2 + 25/4 \(\ge\frac{25}{4}\)

Dấu "=" xảy ra <=> x + 5/2 = 0 => x = -5/2

Vậy Max D = 25/4 <=> x = -5/2

e) Ta có E = x2 - 4xy + 5y2 + 10x - 22y + 28

                  = (x2 - 4xy + 4y2) + 10x - 20y + y2 - 2y + 28

                 = (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2

                 = (x - 2y + 5) + (y - 1)2 + 2 \(\ge\)2

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min E = 2 <=> x = -3 ; y = 1

DD
2 tháng 11 2020

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\ge-2\)

Dấu \(=\)xảy ra khi \(x=1\). Vậy GTNN của \(A\)là \(-2\).

\(B=4x^2+4x+8=4x^2+4x+1+7=\left(2x+1\right)^2+7\ge7\)

Dấu \(=\)xảy ra khi \(x=\frac{-1}{2}\). Vậy GTNN của \(B\)là \(7\).

\(C=-x^2+3x+2=-x^2+2.\frac{3}{2}x-\left(\frac{3}{2}\right)^2+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)

Dấu \(=\) xảy ra khi \(x=\frac{3}{2}\). Vậy GTLN của \(C\)là \(\frac{17}{4}\).

\(D=-x^2-5x=-x^2-2.\frac{5}{2}x-\left(\frac{5}{2}\right)^2+\frac{25}{4}=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu \(=\)xảy ra khi \(x=\frac{-5}{2}\). Vậy GTLN của \(D\) là \(\frac{25}{4}\).

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+25-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\). Vậy GTNN của \(E\) là \(2\).

Bài 3: 

\(x^2-4x+88=x^2-4x+4+84=\left(x-2\right)^2+84>=84\)

=>B<=8/84=2/21

Dấu = xảy ra khi x=2