Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(x^2-4x+88=x^2-4x+4+84=\left(x-2\right)^2+84>=84\)
=>B<=8/84=2/21
Dấu = xảy ra khi x=2
A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020
A = (4x2 + 8xy + 4y2) + (x2 + 2x + 1) + (y2 - 2y + 1) + 2018
A = 4(x + y)2 + (x + 1)2 + (y - 1)2 + 2018 \(\ge\)2018
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)<=> x = -1 và y = 1
Vậy MinA = 2018 khi x = -1 và y = 1
b) B = x2 + 2y2 + 2xy - 2x - 6y + 2019
B = (x + y)2 - 2(x + y) + 1 +(y2 - 4y + 4) + 2014
B = (x + y - 1)2 + (y - 2)2 + 2014 \(\ge\)2014
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MinB = 2014 khi x = -1 và y = 2
A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020
= ( 4x2 + 8xy + 4y2 ) + ( x2 + 2x + 1 ) + ( y2 - 2y + 1 ) + 2018
= 4( x2 + 2xy + y2 ) + ( x + 1 )2 + ( y - 1 )2 + 2018
= 4( x + y )2 + ( x + 1 )2 + ( y - 1 )2 + 2018 ≥ 2018 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
=> MinA = 2018 <=> x = -1 ; y = 1
B = x2 + 2y2 + 2xy - 2x - 6y + 2019
= ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2014
= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + ( y - 2 )2 + 2014
= [ ( x + y )2 - 2.( x + y ).1 + 12 ] + ( y - 2 )2 + 2014
= ( x + y - 1 )2 + ( y - 2 )2 + 2014 ≥ 2014 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
=> MinB = 2014 <=> x = -1 ; y = 2
a/ \(A=x^2+y^2-2x+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow A\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Vậy....
b/ \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)
\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)
\(\Leftrightarrow B\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)
5x2 + 8xy + 5y2 = 72
<=> 5x2 + 10xy + 5y2 - 2xy = 72
<=> 5(x2 + 2xy + y2) - 2xy = 72
<=> 5(x + y)2 - 2xy = 72
<=> -2xy = 72 - 5(x + y)2
A = x2 + y2 = (x + y)2 - 2xy
= (x + y)2 + 72 - 5(x + y)2
= 72 - 4(x + y)2
(x + y)2 > 0 => -4(x + y)2 < 0
=> A < 72
dấu "=" xảy ra khi : x + y = 0 <=> x = -y
\(P=9x^2+12x-5\)
\(=9x^2+12x+4-9\)
\(=\left(3x+2\right)^2-9\ge-9\)
Dấu " = " khi \(\left(3x+2\right)^2=0\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(MIN_P=-9\) khi \(x=\dfrac{-2}{3}\)
b, sai đề
P= 9x^2 + 12x -5
= (3x)^2 + 2.3.2x + 4 -4 -5
=(9x^2 + 2.3.2x + 4) -9
= (3x+2)^2 -9
min p = -9 => (3x+2)^2 = 0
=> x= -2/3
max p = -9 => x= -2/3