K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

\(A=\left(9x^2+12xy+4y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6x+9\right)+4\)

\(A=\left(3x+2y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2+4\)

\(\Rightarrow A\ge4\)(xảy ra dấu "="\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\) )

12 tháng 4 2017

eo biet

5 tháng 11 2019

\(A=4x^2-4xy+5y^2+20x-6y+2044\)

\(=\left(4x^2-4xy+y^2\right)+20x-6y+4y^2+2044\)

\(=\left(2x-y\right)^2+10\left(2x-y\right)+25+\left(4y^2+4y+1\right)+2018\)

\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\ge2018\)

Dấu "=" xảy ra tại \(y=-\frac{1}{2};x=-\frac{11}{4}\)

5 tháng 11 2019

Ta có \(A=4x^2-4xy+5y^2+20x-6y+2044\)

            \(=4x^2-4x\left(y-5\right)+\left(y-5\right)^2+4y^2+4y+1+2018\)

            \(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\)

Vì...\(\Rightarrow A\ge2018\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+5=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{11}{4}\\y=-\frac{1}{2}\end{cases}}}\)

10 tháng 11 2019

BẠN NÀO LÀM ĐÚNG MÌNH K NHA

10 tháng 11 2019

\(A=-x^2+4xy-5y^2+6y-17\)

\(=-\left(x^2-4xy+4y^2\right)-\left(y^2-6y+9\right)-8\)

\(=-\left(x-2y\right)^2-\left(y-3\right)^2-8\)

Vì \(\hept{\begin{cases}-\left(x-2y\right)^2\le0;\forall x,y\\-\left(y-3\right)^2\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-\left(x-2y\right)^2-\left(y-3\right)^2\le0;\forall x,y\)

\(\Rightarrow-\left(x-2y\right)^2-\left(y-3\right)^2-8\le0-8;\forall x,y\)

Hay \(A\le-8;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Vậy MAX \(A=-8\)\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

15 tháng 8 2021

Giúp mình với ạ,cảm ơn mọi người

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

28 tháng 9 2018

a) A = x^2 -10x + 27
Ta có:
A = x^2 - 10x + 27
   = x^2 - 2.x.5 + 5^2  + 2
   = (x-5)^2 + 2
Do (x-5)^2 > 0 ( với mọi x )
=> (x-5)^2 + 2 > 2 (với mọi x)
=> Amin = 2
Dấu "=" xãy ra khi và chỉ khi x-5=0  <=> x=5
Vậy : GTNN của A bằng 2 tại x = 5

28 tháng 9 2018

b, B = 4x^2 + 4x + 20
Ta có :
 B = 4x^2 + 4x + 20
     = (2x)^2 + 2.2x.1 + 1^2 + 19
     = (2x+1)^2  + 19
Do (2x+1)^2 > 0 ( với mọi x)
=> (2x+1)^2 + 19 > 19 (với mọi x)
=> B > 19 (mọi x)
=> Bmin = 19
Dấu "=" xãy ra <=> 2x+1 = 0
<=> x = -1/2
Vậy : GTNN của B =19 tại x = -1/2

26 tháng 7 2018

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

16 tháng 8 2023

\(C=1-6y-5y^2-12xy-9x^2\)

\(\Rightarrow C=-4y^2-12xy-9x^2-y^2-6y+1\)

\(\Rightarrow C=-\left(4y^2+12xy+9x^2\right)-\left(y^2+6y+9\right)+1+9\)

\(\Rightarrow C=-\left(2y-3x\right)^2-\left(y+3\right)^2+10\)

mà \(\left\{{}\begin{matrix}-\left(2y-3x\right)^2\le0,\forall x;y\\-\left(y+3\right)^2\le0,\forall y\end{matrix}\right.\)

\(\Rightarrow C=-\left(2y-3x\right)^2-\left(y+3\right)^2+10\le10\)

\(\Rightarrow GTLN\left(C\right)=10\left(tạix=-2;y=-3\right)\)