Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(D=d^2+10e^2-6de-10e+26\)
\(D=d^2-6de+\left(3e\right)^2+4e^2-10e+26\)
\(D=\left(d-3e\right)^2+4\left(e^2-\frac{5}{2}e+26\right)\)
\(D=\left(d-3e\right)^2+4\left[e^2-2e.\frac{5}{4}+\left(\frac{5}{4}\right)^2+\frac{391}{16}\right]\)
\(D=\left(d-3e\right)^2+4\left[\left(e-\frac{5}{4}\right)^2+\frac{391}{16}\right]\)
\(D=\left(d-3e\right)^2+4\left(e-\frac{5}{4}\right)^2+\frac{391}{4}\)
Mà \(\left(e-\frac{5}{4}\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(e=\frac{5}{4}\)
\(\left(d-3e\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(d-3e=0\)=> \(d=\frac{15}{4}\)
=> \(\left(d-3e\right)^2+\left(e-\frac{5}{4}\right)^2+\frac{391}{4}\ge\frac{391}{4}\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}d=\frac{15}{4}\\e=\frac{5}{4}\end{cases}}\)
Vậy GTNN của D là \(\frac{391}{14}\)khi \(\hept{\begin{cases}d=\frac{15}{4}\\e=\frac{5}{4}\end{cases}}\)
\(A=\frac{1}{16}c^2-9c+10\)
\(A=\left(\frac{1}{16}c^2-9c+324\right)-314\)
\(A=\left(\frac{1}{4}c-18\right)^2-314\)
Mà \(\left(\frac{1}{4}c-18\right)^2\ge0\forall c\)
\(\Rightarrow A\ge-314\)
Dấu "=" xảy ra khi : \(\frac{1}{4}c-18=0\Leftrightarrow c=72\)
Vậy ...
\(B=d^2+10e^2-6de-10e+26\)
\(B=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)
\(B=\left(d-3e\right)^2+\left(e-5\right)^2+1\)
Mà \(\left(d-3e\right)^2\ge0\forall d;e\)
\(\left(e-5\right)^2\ge0\forall e\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}d-3e=0\\e-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}d=15\\e=5\end{cases}}\)
Vậy ...
a, \(A=\frac{1}{16}c^2-9c+10=\left(\frac{1}{16}c^2-9c+324\right)-314=\left(\frac{1}{4}c-18\right)^2-314\ge-314\)
Dấu "=" xảy ra khi \(\frac{1}{4}c-18=0\Leftrightarrow c=72\)
Vậy Amin = -314 khi c = 72
b, \(B=d^2+10e^2-6de-10e+26\)
\(=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)
\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}d-3e=0\\e-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}d-15=0\\e=5\end{cases}\Leftrightarrow}\hept{\begin{cases}d=15\\e=5\end{cases}}}\)
Vậy Bmin = 1 khi d = 15, e = 5
1. a. \(A=8a-8a^2+3=-8\left(a-\frac{1}{2}\right)^2+5\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow-8\left(a-\frac{1}{2}\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow-8\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)
Vậy Amax = 5 <=> a = 1/2
b. \(B=b-\frac{9b^2}{25}=-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\)
Vì \(\left(b-\frac{25}{18}\right)^2\ge0\forall b\)\(\Rightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\le\frac{25}{36}\)
Dấu "=" xảy ra \(\Leftrightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2=0\Leftrightarrow b-\frac{25}{18}=0\Leftrightarrow b=\frac{25}{18}\)
Vậy Bmax = 25/36 <=> b = 25/18
a,\(A=8a-8a^2+3\)
\(=-8\left(a^2-a\right)+3\)
\(=-8\left(a^2-2a\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+3\)
\(=-8\left[\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\right]+3\)
\(=-8\left(a-\frac{1}{2}\right)^2+2+3\)
\(=-8\left(a-\frac{1}{2}\right)^2+5\le5\forall a\)
Dấu"=" xảy ra khi \(\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)
Vậy \(Max_A=5\)khi\(a=\frac{1}{2}\)
bài 2:
b,\(D=d^2+10e^2-6de-10e+26\)
\(=d^2-23de+\left(3e\right)^2+e^2-2.5e+5^2+1\)
\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)
Dấu"=" xảy ra khi\(\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}}\)
vậy \(D_{min}=1\)khi \(d=15;e=5\)
c,:\(E=4x^4+12x^2+11\)
\(=\left(2x^2\right)^2+2.2x^2.3+3^2+2\)
\(=\left(2x^2+3\right)^2+2\ge2\forall x\)
còn 1 đoạn nx bạn tự lm tiếp,lm giống như D
Con a) Đang nghĩ
b) D = d2 + 10e2 - 6de - 10e + 26
D= d2 - 2.3de + ( 3e)2 + e2 - 2.5e + 52 + 1
D= ( d - 3e)2 + ( e - 5)2 + 1
Do : ( d - 3e)2 lớn hơn hoặc bằng 0 với moi d, e
( e - 5)2 lớn hơn hoặc bằng 0 với mọi e
Vậy : ( d - 3e)2 + 1 lớn hơn hoặc bằng 1 với moi d, e
( e - 5)2 + 1 lớn hơn hoặc bằng 1 với mọi e
Vậy Dmin = 1 khi e = 5 . d = 15
c) E = 4x2 + 12x + 11
E = ( 2x)2 + 2.2x.3 + 32 + 2
E= ( 2x + 3)2 + 2
Do : ( 2x + 3)2 lớn hơn hặc bằng 0 với mọi x
--> ( 2x + 3)2 + 2 lớn hơn hặc bằng 2 với mọi x
Vậy , Emin = 2 KHI VÀ CHỈ KHI \(\dfrac{-3}{2}\)
A = 4x4 + 12x2 + 11
A = ( 2x2)2 + 2.2x2.3 + 32 + 2
A = ( 2x + 3)2 + 2
Do : ( 2x + 3)2 lớn hơn hoặc bằng 0 với mọi x
Suy ra : ( 2x + 3)2 + 2 lớn hơn hoặc bằng 2 với mọi x
Vậy , Amin = 2 khi và chỉ khi : 2x + 3 = 0 -> x = \(-\dfrac{3}{2}\)
\(A=\dfrac{1}{16}c^2-9c+10=\dfrac{1}{16}\left(x-72\right)^2-314\ge-314\)
\(A_{min}=-314\) khi \(c=72\)
\(B=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\)
\(B_{min}=1\) khi \(\left\{{}\begin{matrix}d=15\\e=5\end{matrix}\right.\)
\(C=4x^4+12x^2+11\)
Do \(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\) ; \(\forall x\Rightarrow C\ge11\)
\(C_{min}=11\) khi \(x=0\)
a) Ta có: \(\dfrac{1}{16}c^2-9c+10\)
\(=\left(\dfrac{1}{4}c\right)^2-2\cdot\dfrac{1}{4}c\cdot18+324-314\)
\(=\left(\dfrac{1}{4}c-18\right)^2-314\ge-314\forall c\)
Dấu '=' xảy ra khi \(\dfrac{1}{4}c=18\)
hay c=72
Vậy: Giá trị nhỏ nhất của biểu thức \(\dfrac{1}{16}c^2-9c+10\) là -314 khi c=72
b) Ta có: \(d^2+10e^2-6de-10e+26\)
\(=d^2-6de+9e^2+e^2-10e+25+1\)
\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}e=5\\d=3e=3\cdot5=15\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(d^2+10e^2-6de-10e+26\) là 1 khi e=5 và d=15
c) Ta có: \(4x^4+12x^2+11\)
\(=4x^4+12x^2+9+2\)
\(=\left(2x^2+3\right)^2+2\ge3^2+2=11\)
Dấu '=' xảy ra khi x=0
Vậy: Giá trị nhỏ nhất của biểu thức \(4x^4+12x^2+11\) là 11 khi x=0
a) \(A=3x^2+x-1=3\left(x^2+\frac{x}{3}+\frac{1}{36}\right)-\frac{13}{12}=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow x+\frac{1}{6}=0\)\(\Leftrightarrow x=-\frac{1}{6}\)
Vậy \(MinA=-\frac{13}{12}\Leftrightarrow x=-\frac{1}{6}\)
b)\(B=t^2-6t=\left(t^2-6t+9\right)-9=\left(t-3\right)^2-9\ge-9\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t-3=0\)\(\Leftrightarrow t=3\)
Vậy \(MinB=-9\Leftrightarrow t=3\)
c)\(C=x^2+\frac{3}{2}y^2-2x-4y+4\)
\(=\left(x^2-2x+1\right)+\frac{3}{2}\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{3}{2}\left(y-\frac{4}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{4}{3}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)
Vậy \(MinC=\frac{1}{3}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)
d)\(D=2x^2+y^2-2xy+4x+2024\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+2020\)
\(=\left(x-y\right)^2+\left(x+2\right)^2+2020\ge2020\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y\\x=-2\end{cases}}\)\(\Leftrightarrow x=y=-2\)
Vậy \(MinD=2020\Leftrightarrow x=y=-2\)
áp dụng bđt bunhiacopxki
(a^2+b^2)(1^2+1^2) >= (a.1+b.1)^2 = (a+b)^2=4
=>a^2+b^2 >= 4/2=2
dấu "=" xảy ra <=> a=b,mà a+b=2=>a=b=1
Vậy minD=2 khi a=b=1
D= d2 + 10e2 - 6de - 10e + 26
= (d2 - 6de + 9e2) + (e2 - 10e + 25) + 1
= (d - 3e)2 + (e - 5)2 + 1 ≥ 1
Dấu "=" xảy ra khi d - 3e = e - 5 = 0 <=> \(\left\{{}\begin{matrix}e=5\\d=15\end{matrix}\right.\)
Vậy minD = 1 khi e=5; d=15
Cảm ơn bạn nhé!