\(\frac{1}{16}\)\(c^2\)-9c+10
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

\(A=\frac{1}{16}c^2-9c+10\)

\(A=\left(\frac{1}{16}c^2-9c+324\right)-314\)

\(A=\left(\frac{1}{4}c-18\right)^2-314\)

Mà  \(\left(\frac{1}{4}c-18\right)^2\ge0\forall c\)

\(\Rightarrow A\ge-314\)

Dấu "=" xảy ra khi :  \(\frac{1}{4}c-18=0\Leftrightarrow c=72\)

Vậy ...

\(B=d^2+10e^2-6de-10e+26\)

\(B=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)

\(B=\left(d-3e\right)^2+\left(e-5\right)^2+1\)

Mà  \(\left(d-3e\right)^2\ge0\forall d;e\)

       \(\left(e-5\right)^2\ge0\forall e\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}d-3e=0\\e-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}d=15\\e=5\end{cases}}\)

Vậy ...

13 tháng 7 2018

a, \(A=\frac{1}{16}c^2-9c+10=\left(\frac{1}{16}c^2-9c+324\right)-314=\left(\frac{1}{4}c-18\right)^2-314\ge-314\)

Dấu "=" xảy ra khi \(\frac{1}{4}c-18=0\Leftrightarrow c=72\)

Vậy Amin = -314 khi c = 72

b, \(B=d^2+10e^2-6de-10e+26\)

\(=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}d-3e=0\\e-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}d-15=0\\e=5\end{cases}\Leftrightarrow}\hept{\begin{cases}d=15\\e=5\end{cases}}}\)

Vậy Bmin = 1 khi d = 15, e = 5

24 tháng 8 2020

1. a. \(A=8a-8a^2+3=-8\left(a-\frac{1}{2}\right)^2+5\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow-8\left(a-\frac{1}{2}\right)^2+5\le5\)

Dấu "=" xảy ra \(\Leftrightarrow-8\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

Vậy Amax = 5 <=> a = 1/2

b. \(B=b-\frac{9b^2}{25}=-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\)

Vì \(\left(b-\frac{25}{18}\right)^2\ge0\forall b\)\(\Rightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\le\frac{25}{36}\)

Dấu "=" xảy ra \(\Leftrightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2=0\Leftrightarrow b-\frac{25}{18}=0\Leftrightarrow b=\frac{25}{18}\)

Vậy Bmax = 25/36 <=> b = 25/18

24 tháng 8 2020

a,\(A=8a-8a^2+3\)

       \(=-8\left(a^2-a\right)+3\)

       \(=-8\left(a^2-2a\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+3\)

       \(=-8\left[\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\right]+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+2+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+5\le5\forall a\) 

Dấu"=" xảy ra khi \(\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)

Vậy \(Max_A=5\)khi\(a=\frac{1}{2}\)

bài 2:

b,\(D=d^2+10e^2-6de-10e+26\)

\(=d^2-23de+\left(3e\right)^2+e^2-2.5e+5^2+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)

Dấu"=" xảy ra khi\(\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}}\)

vậy \(D_{min}=1\)khi \(d=15;e=5\)

c,:\(E=4x^4+12x^2+11\)

\(=\left(2x^2\right)^2+2.2x^2.3+3^2+2\)

\(=\left(2x^2+3\right)^2+2\ge2\forall x\)

còn 1 đoạn nx bạn tự lm tiếp,lm giống như D

        

       

19 tháng 7 2020

Bài này cho thêm điều kiện a, b, c dương

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(E=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\)\(\frac{\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}}{2}\ge\frac{3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{6}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 6 2018

Ta có \(D=d^2+10e^2-6de-10e+26\)

\(D=d^2-6de+\left(3e\right)^2+4e^2-10e+26\)

\(D=\left(d-3e\right)^2+4\left(e^2-\frac{5}{2}e+26\right)\)

\(D=\left(d-3e\right)^2+4\left[e^2-2e.\frac{5}{4}+\left(\frac{5}{4}\right)^2+\frac{391}{16}\right]\)

\(D=\left(d-3e\right)^2+4\left[\left(e-\frac{5}{4}\right)^2+\frac{391}{16}\right]\)

\(D=\left(d-3e\right)^2+4\left(e-\frac{5}{4}\right)^2+\frac{391}{4}\)

Mà \(\left(e-\frac{5}{4}\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(e=\frac{5}{4}\)

\(\left(d-3e\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(d-3e=0\)=> \(d=\frac{15}{4}\)

=> \(\left(d-3e\right)^2+\left(e-\frac{5}{4}\right)^2+\frac{391}{4}\ge\frac{391}{4}\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}d=\frac{15}{4}\\e=\frac{5}{4}\end{cases}}\)

Vậy GTNN của D là \(\frac{391}{14}\)khi \(\hept{\begin{cases}d=\frac{15}{4}\\e=\frac{5}{4}\end{cases}}\)

8 tháng 3 2021

\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> x = 3

Vậy MinA = 1

\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra <=> x = 1

Vậy MinB = -2

\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu "=" xảy ra <=> x = -2 ; y = 5

Vậy MinC = 10

8 tháng 3 2021

\(A=x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b,\(B=5x^2-10x+3\)

\(=5\left(x^2-2x+1\right)-2\)

\(=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_B=-2\Leftrightarrow x=1\)

c,\(C=2x^3+8x+y^2-10+43\)

\(=2x^2+8x+8+y^2-10y+25+10\)

\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

a: \(B=\left(\dfrac{x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{10}{5\left(x+2\right)}+\dfrac{1}{x-2}\right):\dfrac{x^2-4+6-x^2}{x-2}\)

\(=\left(\dfrac{1}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x+2}+\dfrac{1}{x-2}\right):\dfrac{2}{x-2}\)

\(=\dfrac{1-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2}=\dfrac{-x+7}{2\left(x+2\right)}\)

b: Ta có: |x|=1/2

=>x=1/2 hoặc x=-1/2

Thay x=1/2 vào B, ta được:

\(B=\dfrac{-\dfrac{1}{2}+7}{2\left(\dfrac{1}{2}+2\right)}=\dfrac{13}{10}\)

Thay x=-1/2 vào B, ta được:

\(B=\dfrac{\dfrac{1}{2}+7}{2\left(-\dfrac{1}{2}+2\right)}=\dfrac{5}{2}\)

6 tháng 2 2017

1) Ta có : 

\(x^2\ge0\forall x,y^2\ge0\forall y\)

\(\Rightarrow x^2+y^2\ge0\forall x,y\)

Ta lại có 

\(x^2+y^2\ge2xy\)

Để 2xy đạt giá trị nhỏ nhất thì xy đạt giá trị nhỏ nhất 

Nhưng cả x lẫn y nhất định phải cx dấu ko đk khác dấu 

Dấu "=" xảy ra khi và chỉ khi x = y 0

Vậy GTNN của x2 + y2 là 0 khi và chỉ khi x = y = 0 

6 tháng 2 2017

Bài 2:

Ta thấy: \(\left|x+1\right|^{11}\ge0\)

\(\Rightarrow\left|x+1\right|^{11}+10\ge10\)

\(\Rightarrow A\ge10\)

Dấu "=" xảy ra khi \(x=-1\)

Vậy...

Bài 3:

\(B=x^2+9x+6=x^2+9x+\frac{81}{4}-\frac{57}{4}\)

\(=\left(x^2+9x+\frac{81}{4}\right)-\frac{57}{4}\)

\(=\left(x+\frac{9}{2}\right)^2-\frac{57}{4}\ge\frac{57}{4}\)

Dấu "=" xảy ra khi \(x=-\frac{9}{2}\)

Bài 4: phân thức trên ko xác định khi mẫu bằng 0

Tức là \(x-7=0\Rightarrow x=7\)

P/s:Mấy bài này cx ko khó lắm bn tự làm sẽ thông minh hơn 

21 tháng 6 2018

D= d2 + 10e2 - 6de - 10e + 26

= (d2 - 6de + 9e2) + (e2 - 10e + 25) + 1

= (d - 3e)2 + (e - 5)2 + 1 ≥ 1

Dấu "=" xảy ra khi d - 3e = e - 5 = 0 <=> \(\left\{{}\begin{matrix}e=5\\d=15\end{matrix}\right.\)

Vậy minD = 1 khi e=5; d=15

21 tháng 6 2018

Cảm ơn bạn nhé!