Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$D=|x+2|+|x+3|=|-x-2|+|x+3|\geq |-x-2+x+3|=1$
Vậy $D_{\min}=1$. Giá trị này đạt tại $(-x-2)(x+3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
Ta có : \(D=\left(\left|x-1\right|+\left|x-9\right|\right)+\left(\left|x-2\right|+\left|x-8\right|\right)+\left(\left|x-3\right|+\left|x-7\right|\right)+\left(\left|x-4\right|+\left|x-6\right|\right)+\left|x-5\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , đẳng thức xảy ra khi a,b cùng dấu được
\(\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)
Tương tự : \(\left|x-2\right|+\left|x-8\right|\ge6\)
\(\left|x-3\right|+\left|x-7\right|\ge4\)
\(\left|x-4\right|+\left|x-6\right|\ge2\)
Và \(\left|x-5\right|\ge0\)
Cộng các BĐT trên theo vế được \(D\ge0+2+4+6+8=20\)
Dấu đẳng thức xảy ra khi đồng thời các BĐT trong trị tuyệt đối cùng dấu (Mình không liệt kê ra vì dài) , và x - 5 = 0 => x = 5 thỏa mãn
Vậy D đạt giá trị nhỏ nhất bằng 20 khi x = 5
Có: \(\left|x-1\right|\ge x-1;\left|x-2\right|\ge x-2;\left|x-3\right|\ge x-3;\left|x-4\right|\ge x-4\)
\(\left|x-5\right|\ge0\)
\(\left|x-6\right|\ge6-x;\left|x-7\right|\ge7-x;\left|x-8\right|\ge8-x;\left|x-9\right|\ge9-x\)
Do đó, \(D\ge\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+\left(x-4\right)+0+\left(6-x\right)+\left(7-x\right)+\left(8-x\right)+\left(9-x\right)\)
hay \(D\ge20\)
Dấu "=" xảy ra khi \(\begin{cases}x-4\ge0\\x-5=0\\6-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge4\\x=5\\x\le6\end{cases}\)=> x = 5
Vậy GTNN của D là 20 khi x = 5
1) Nếu x<-2 => -x+3-x-2=1 => -2x =0 => x =0 loại
Nếu -2</ x < 3 => -x+3 +x+2 =1 => 5=1 loại
Nếu x >/ 3 => x-3 + x+2 =1 => 2x =2 => x =1 loại
Vậy không có x nào thỏa mãn
2) C không có GTNN
D= /x -2 / + / 8 -x/ >/ /x-2+8 -x / = /6/ = 6
D min = 6 khi 2</ x </ 8
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
a)D=x2-x-1
\(=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)
Ta thấy:\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge0-\frac{5}{4}=-\frac{5}{4}\)
\(\Rightarrow D\ge-\frac{5}{4}\)
Dấu = khi x=1/2
Vậy Dmin=-5/4 <=>x=1/2
b)H=9x2-36x-136
\(=9\left(x-2\right)^2-172\)
Ta thấy:\(9\left(x-2\right)^2-172\ge0-172=-172\)
\(\Rightarrow H\ge-172\)
Dấu = khi x=2
Vậy Dmin=-172 <=> x=2
c)I=x(x-5)
\(=\frac{1}{4}\left(2x-5\right)^2-\frac{25}{4}\)
Ta thấy:\(\frac{1}{4}\left(2x-5\right)^2-\frac{25}{4}\ge0-\frac{25}{4}=-\frac{25}{4}\)
\(\Rightarrow I\ge-\frac{25}{4}\)
Dấu = khi x=5/2
Vậy Imin=-25/4 <=>x=5/2
Có công thức : l a l + l b l > l a + b l
=> l x- 2 l + l x - 3 l
=> l x - 2 l + l 3 - x l
=> l x - 2 l + l 3 - x l \(\ge\)l x - 2 + 3 - x l ( = 1 )
=> Vậy GTNN là 1 khi x \(\ge\)3
=>
Ta có: |x - 2| + |x - 3| = |x - 2| + |3 - x| > = |x - 2 + 3 - x| = |1| = 1
Dấu "=" xảy ra<=> (x -- 2)(3 - -x ) > = 0 <=> 2 < = x < = 3
Vậy min|x - 2| + |x - 3| = 1 <=> 2 < = x < = 3