K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2015

1)  Nếu x<-2 => -x+3-x-2=1 => -2x =0 => x =0 loại

   Nếu -2</ x < 3  => -x+3 +x+2 =1  => 5=1 loại

   Nếu x >/ 3 => x-3 + x+2 =1 => 2x =2 => x =1 loại

Vậy không có x nào thỏa mãn

2) C  không có GTNN

  D= /x -2 /  + / 8 -x/   >/     /x-2+8 -x /  =  /6/ = 6

D min = 6 khi  2</  x   </  8 

12 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

7 tháng 2 2017

a,xet cac th sau

x<1'=>1-x+4+x=4=>3-2x=4

=>2x=-1=>x=-1/2

th2 1<x,<5

=>x-1+4+x=4<=>3=4(vo li)

vay x=-1/2

7 tháng 2 2017

căn viết kiểu j

28 tháng 9 2016

gtnn nghia la gi

28 tháng 9 2016

GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé

Ta có  \(\left|x+1\right|\ge0\forall x\Rightarrow\left|x+1\right|+2\ge2\)

Hay \(A\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của A=2 <=> x=-1

Ta có  \(\left|x+1\right|\ge0\forall x\Rightarrow3-\left|x+1\right|\le3\)

Hay \(B\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTLN của B=3 <=> x=-1

Ta có  \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|5-x\right|\ge5-x\left(2\right)\end{cases}}\)

Từ (1);(2) => \(\left|x+1\right|+\left|5-x\right|\ge x+1+5-x=6\)

Hay \(C\ge6\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le5\end{cases}\Leftrightarrow}-1\le x\le5}\)

Vậy GTNN của C=6 <=> \(-1\le x\le5\)

Ta có  \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|x-3\right|\ge3-x\left(2\right)\end{cases}}\)

Từ (1);(2) => \(\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

Hay \(D\ge4\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le3\end{cases}\Leftrightarrow}-1\le x\le3}\)

Vậy GTNN của C=4 <=> \(-1\le x\le3\)

 

Dòng cuối mik nhầm 

GTNN của D =4

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)