Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)
Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Rightarrow x=\sqrt[5]{3}\)
\(\Leftrightarrow Q=\frac{\left(x+\frac{y}{2}+\frac{y}{2}\right)^3}{xy^2}\)
Áp dụng BĐT Cô-si cho 3 số dương:
\(x+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{xy^2}{4}}\)
\(\Rightarrow\left(x+\frac{y}{2}+\frac{y}{2}\right)^3\ge3.\frac{xy^2}{4}\)
\(\Rightarrow Q\ge\frac{3.\frac{xy^2}{4}}{xy^2}=\frac{3}{4}\)
\("="\Leftrightarrow x=\frac{y}{2}\Leftrightarrow y=2x\)
Mình áp dụng luôn Cô - si cho các số ta được
a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)
b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)
g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)
a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)
b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)
c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)
d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)
e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)
f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)
g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)
Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)
Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)
Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)
Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1
Vậy minP=\(\frac{3}{2}\)khi x=y=z=1
Đặt \(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\) \(\Rightarrow t^2=\frac{x^2}{y^2}+\frac{x^2}{y^2}+2\)
\(\Rightarrow A=f\left(t\right)=3\left(t^2-2\right)-8t+10=3t^2-8t+4\)
Xét hàm \(f\left(t\right)\) trên \([2;+\infty)\)
Có \(a=3>0\) ; \(-\frac{b}{2a}=\frac{8}{6}=\frac{4}{3}< 2\)
\(\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)
\(\Rightarrow\min\limits_{[2;+\infty)}f\left(t\right)=f\left(2\right)=0\)
Đặt \(\frac{x}{y}=t\)
Ta có: \(A=3\left(t^2+\frac{1}{t^2}\right)-8\left(t+\frac{1}{t}\right)+10\)
Ta sẽ chứng minh \(A\ge0\)
\(3\left(t^2+\frac{1}{t^2}\right)-8\left(t+\frac{1}{t}\right)\ge-10\)
\(\Leftrightarrow3t^2-8t+5+\frac{3}{t^2}-\frac{8}{t}+5\ge0\)
\(\Leftrightarrow\left(3t-5\right)\left(t-1\right)+\left(\frac{3}{t}-5\right)\left(\frac{1}{t}-1\right)\ge0\)
\(\Leftrightarrow\left(3t-5\right)\left(t-1\right)+\left(\frac{5t-3}{t}\right)\left(\frac{t-1}{t}\right)\ge0\)
\(\Leftrightarrow\left(t-1\right)\left(3t-5+\frac{5t-3}{t^2}\right)\ge0\)
\(\Leftrightarrow\frac{\left(t-1\right)^2\left(3t^2-2t+3\right)}{t^2}\ge0\) (đúng)
Đẳng thức xảy ra khi t = 1 hay x = y
Do đó \(A\ge0\) hay Min A = 0 <=> x = y
P/s: Em ko chắc
\(y=\dfrac{x}{2}+\dfrac{18}{x}\ge2\sqrt{\dfrac{18x}{2x}}=6\)
\(y_{min}=6\) khi \(x=6\)