Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)
Cộng theo từng vế
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)
Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số :
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)
=> \(x+y+z\ge1\)
Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = y = z =1/3
Vậy min A = 1/2 <=> x = y = z = 1/3
Ta có:
\(x+\frac{1}{x}=\left(x+\frac{2019^2}{x}\right)-\frac{2019^2-1}{x}\ge_{Cauchy}2\sqrt{x.\frac{2019^2}{x}}-\frac{2019^2-1}{2019}=2.2019-2019+\frac{1}{2019}=2019+\frac{1}{2019}\).
Tương tự, \(y+\frac{1}{y}\ge2020+\frac{1}{2020};z+\frac{1}{z}\ge2021+\frac{1}{2021}\).
Do đó: \(M\ge2019+2020+2021=3.2020=6060\).
Dấu "="xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=2019\\y=2020\\z=2021\end{matrix}\right.\)
\(P=x+y+z+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge x+y+z+\frac{18}{x+y+z}\)
\(P\ge x+y+z+\frac{1}{x+y+z}+\frac{17}{x+y+z}\)
\(P\ge2\sqrt{\left(x+y+z\right)\frac{1}{\left(x+y+z\right)}}+\frac{17}{1}=19\)
\(P_{min}=19\) khi \(x=y=z=\frac{1}{3}\)
cho a,b,c>0 thỏa x2+y2+z2=1.tìm gtnn của P=\(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\)
\(P=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)
Ta có đánh giá: \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\) \(\forall x\in\left(0;1\right)\)
Thật vậy, BĐT tương đương:
\(2x\ge3\sqrt{3}x^2-3\sqrt{3}x^4\)
\(\Leftrightarrow\left(\sqrt{3}x-1\right)^2\left(\sqrt{3}x+2\right)\ge0\) (luôn đúng)
Tương tự: \(\frac{y}{1-y^2}\ge\frac{3\sqrt{3}}{2}y^2\) ; \(\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}z^2\)
Cộng vế với vế: \(P\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{k}.Dau"="xayrakhi:x=y=z=\frac{k}{3}\)
shitbo
Chứng minh ra chứ ghi mỗi thế sao đc e