K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

Có:     \(x^3+8+8\ge12x\)

VÀ:     \(y^3+27+27\ge27y\)             (LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ)

VÀ:   \(\frac{x^3}{8}+\frac{y^3}{27}+1\ge\frac{xy}{2}\)

=>     \(\hept{\begin{cases}\frac{x^3}{8}+2\ge\frac{3x}{2}\\\frac{y^3}{27}+2\ge y\\\frac{x^3}{8}+\frac{y^3}{27}+1\ge\frac{xy}{2}\end{cases}}\)

CỘNG LẦN LƯỢT 3 BĐT TRÊN LẠI TA ĐƯỢC: 

=>     \(\frac{2x^3}{8}+\frac{2y^3}{27}+5\ge\frac{3x}{2}+y+\frac{xy}{2}\)

MÀ:     \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\)

=>      \(\frac{3x}{2}+y+\frac{xy}{2}=9\)

=>     \(\frac{2x^3}{8}+\frac{2y^3}{27}+5\ge9\)

=>       \(\frac{x^3}{8}+\frac{y^3}{27}\ge2\)

=>      \(\frac{27x^3+8y^3}{216}\ge2\)

=>       \(27x^3+8y^3\ge2.216=432\)

DẤU "=" XẢY RA <=>    \(x=2;y=3\)

VẬY P MIN = 432 <=>    x = 2;  y = 3.

Khó thế, mới lớp 8, làm mãi ko ra

30 tháng 1 2020

Áp dụng BĐT AM-GM:

P\(\le\Sigma\frac{x}{2\sqrt{x}}=\frac{x+y+z}{2}=1\)

Pmax=1 khi x=y=z=2/3.

1 tháng 2 2020

bạn có thể giải thích rõ ràng ko ạ

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{(\frac{1}{2})^2}=16$

$\frac{1}{4xy}+64xy\geq 8$

$\frac{5}{4xy}\geq \frac{5}{(x+y)^2}\geq \frac{5}{(\frac{1}{2})^2}=20$

Cộng theo vế:

$\Rightarrow P\geq 44$

Vậy $P_{\min}=44$ khi $x=y=\frac{1}{4}$

15 tháng 5 2019

Kĩ thuật cô si ngược ý

17 tháng 12 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{k}.Dau"="xayrakhi:x=y=z=\frac{k}{3}\)

17 tháng 12 2019

shitbo

Chứng minh ra chứ ghi mỗi thế sao đc e 

Mình áp dụng luôn Cô - si cho các số ta được

a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)

b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)

c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)

h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)

g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)