Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|1+2x\right|+\left|2x-3\right|\)
\(=\left|1+2x\right|+\left|3-2x\right|\)
Áp dụng BĐT : \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(\left|1+2x\right|+\left|3-2x\right|\ge\left|1+2x+3-2x\right|=4\)
Vậy GTNN của biểu thức trên là : 4 khi \(-\frac{1}{2}\le x\le\frac{3}{2}\)
Chúc bạn học tốt !!!
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|1+2x\right|+\left|2x-3\right|\)
\(=\left|1+2x\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(\left|1+2x\right|+\left|3-2x\right|\ge\left|1+2x+3-2x\right|=\left|4\right|=4\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(1+2x\right)\left(3-2x\right)\ge0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}1+2x\ge0\\3-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge-1\\-2x\ge-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\x\le\frac{3}{2}\end{cases}}\Rightarrow-\frac{1}{2}\le x\le\frac{3}{2}\)
2. \(\hept{\begin{cases}1+2x\le0\\3-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le-1\\-2x\le-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{1}{2}\\x\ge\frac{3}{2}\end{cases}}\)(loại)
Vậy GTNN của biểu thức = 4 <=> \(-\frac{1}{2}\le x\le\frac{3}{2}\)
\(\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}=|1+2x|+|2x-3|=|1+2x|+|3-2x|>=|1+2x+3-2x|=4\)
=>p min=4
dau "="xay ra <=>(1-2x)(3-2x)>=0
=>x
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
Ngại làm lần 2 quá bạn ơi
Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến
Ta có:
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x\right)^2-2.2x.3+3^2}+\sqrt{\left(2x\right)^2-2.2x.2+2^2}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=\left|2x-3\right|+\left|2x-2\right|\)
\(=\left|2x-3\right|+\left|2-2x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(P\ge\left|\left(2x-3\right)+\left(2-2x\right)\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)
Vậy MinP = 1 \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=|2x-3|+|2-2x|\)
=>\(P\ge|\left(2x-3\right)+\left(2-2x\right)|=|-1|=1\)