
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = 2 (x2 - 2x +1006) = 2 (x-1)2 +2010
Vì (x-1)2 \(\ge\)0 với mọi x
=> 2 (x-1)2 \(\ge\)0
=> 2(x-1)2 + 2010 \(\ge\) 2010
Vậy GTNN của A là 2010. Dấu "=" xảy ra khi x = 1
B = (x + 50)2 -3500 \(\le\) 3500 (giải thích giống trên)
=> B đạt GTLN là 3500 (ko có GTNN trong bài này nhé)
C = -a2 +3a + 4 = -(a2 - 3a - 4)= -[(a-9/4)2 - 25/4] = -(a-9/4)2 + 25/4
Vì (a - 9/4)2 \(\ge\) 0
=> - (a - 9/4)2 \(\le\)0 => - (a - 9/4)2 +25/4 \(\le\)25/4
=> C đạt GTLN là 25/4
D = 2x - x 2 = -(x-1)2 +1 \(\le\)1
=> GTLN của D là 1
Bài 1 : Tìm GTNN :
a) Q(x)=\(x^2+100x-1000\)
b) P=\(\left(x-2y\right)^2+\left(y-2012\right)^{2016}\)

Bài 1: Tìm GTNN :
\(a,Q\left(x\right)=x^2+100x-1000\)
\(=x^2+100x+2500-2500-1000\)
\(=\left(x^2+100x+2500\right)-3500\)
\(=\left(x^2+2.x.50+50^2\right)-3500\)
\(=\left(x+50\right)^2-3500\)
Ta có :
\(\left(x+50\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+50\right)^2-3500\ge-3500\)
Dấu = xảy ra \(\Leftrightarrow\left(x+50\right)^2=0\)
\(\Leftrightarrow x+50=0\Leftrightarrow x=-50\)
Vậy \(Min_{Q\left(x\right)}=-3500\Leftrightarrow x=-50\)
\(P=\left(x-2y\right)^2+\left(y-2012\right)^{2016}\)
Vì \(\left(x-2y\right)^2\ge0\) với ∀ x;y
\(\left(y-2012\right)^{2016}\ge0\) với ∀ y
\(\Rightarrow\) \(P=\left(x-2y\right)^2+\left(y-2012\right)^{2016}\)\(\ge0\) với ∀ x;y
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(y-2012\right)^{2016}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2012=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4024\\y=2012\end{matrix}\right.\)
Vậy \(Min_P=0\) khi x =4024;y=2012

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....

a) Vì\(x=99\Rightarrow x+1=100\)
Thay x+1=100 vào biểu thức A ta được :
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)
\(=x+9\)
\(=99+9\)
\(=108\)
b) Tương tự
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)
\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)
\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)
\(\Rightarrow A=0-0+0+01-9=-9\)

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!

Vì x2 ≥ 0 => 2x2 ≥ 0 ; |y - 2| ≥ 0 => 3|y - 2| ≥ 0
=> (2x2 + 3|y - 2|) ≥ 0
=> (2x2 + 3|y - 2|) - 2016 ≤ 2016
Dấu " = " xảy ra <=> 2x2 = 0 và 3|y - 2| = 0
<=> x2 = 0 |y - 2| = 0
<=> x = 0 y - 2 = 0
<=> x = 0 y = 2
Vậy GTLN C = 2016 khi x = 0; y = 2
b, Ta có: \(D=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Vì x2 ≥ 0 => x2 + 3 ≥ 3
=> \(\frac{12}{x^2+3}\le\frac{12}{3}=4\)
=> \(1+\frac{12}{x^2+3}\le1+4=5\)
Dấu " = " xảy ra <=> x2 = 0 <=> x = 0
Vậy GTNN của D = 5 khi x = 0
Đề ngược??
Ta có: D = x2 +100x - 1000
= x2 +100x +2500 - 3500
= ( x + 50)2 -3500
Vì : \(\left(x+50\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+50\right)^2-3500\ge-3500\forall x\)
Hay : \(D\ge-3500\forall x\)
Vậy: Min D = -3500 tại \(\left(x+50\right)^2=0\Rightarrow x=-50\)
=.= hk tốt!!
Thanks