Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có x = 2020 => x + 1 = 2021. Thay 2021 = x + 1 vào A
\(A=x^6-\left(x+1\right)^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Có x = -19 => x - 1 = -20 => - ( x - 1 ) = 20. Thay 20 = - ( x - 1) vào B
\(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-\left(x-1\right)x^7-...-\left(x-1\right)x^2-\left(x-1\right)x-x+1\)
\(B=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2+x-x+1\)
\(B=1\)
Chúc bạn học tốt!!!
thay x=21, ta có
N = \(21^6-20\cdot21^5-20\cdot21^4-20\cdot21^3-20\cdot21^2-20\cdot21+3\)
\(N=21.21^5-20\cdot21.21^4-20\cdot21\cdot21^3-20\cdot21\cdot21^2-20\cdot21\cdot21-20\cdot21+3\)
tiếp theo bn rút t/s chung ra rồi tiếp tục làm nhé mk hơi ngại làm
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)
\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)
\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)
Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:
\(E=5x.0+105=105\)
a) Ta có : |x| = 1 <=> x = 1 hoặc x = 1
Thay x = 1 vào A được :
A = 2 . 12 - 3.1 + 1
= 2 - 3 + 1
= -1 + 1 = 0
Thay tương tự x = - 1 vào A được A = 6
Vậy A nhận gt bằng 0 tại x = 1
A nhận gt bằng 6 tại x = -1
b) c) hình như đề thiếu
a) Vì\(x=99\Rightarrow x+1=100\)
Thay x+1=100 vào biểu thức A ta được :
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)
\(=x+9\)
\(=99+9\)
\(=108\)
b) Tương tự
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)
\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)
\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)
\(\Rightarrow A=0-0+0+01-9=-9\)