Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(11^m\) tận cùng bằng 1, còn \(5^n\) tận cùng bằng 5. Nếu \(11^m>5^n\) thì A tận cùng bằng 6, nếu \(11^m< 5^n\) thì A tận cùng bằng 4.
Ta chỉ ra trường hợp A = 4 : với m = 2, n = 3 thì A = |121-125| = 4
Như vậy min A = 4 khi chẳng hạn m = 2, n = 3
Ta thấy 11m tận cùng bằng 1, còn 5n tận cùng bằng 5.
Nếu 11m>5n thì A tận cùng bằng 6, nếu 11m<5n thì A tận cùng bằng 4.
Ta chỉ ra trường hợp A = 4 : với m = 2, n = 3 thì A = |121-125| = 4
Như vậy min A = 4 khi chẳng hạn m = 2, n = 3
Ta thấy \(11^m\)tận cùng bằng \(1\)
\(5^n\)tận cùng bằng \(5\)
Nếu \(11^m>5^n\)thì \(A\)tận cùng bằng \(6\)
Nếu \(11^m< 5^n\)thì \(A\)tận cùng bằng \(4\)
Khi \(m=2;n=3\)thì \(A=\left|121-124\right|=4\)
\(\Rightarrow Min\left(A\right)=4\)( chẳng hạn khi \(m=2;n=3\))
a, Gọi \(d=ƯCLN\left(n+4;n+5\right)\left(d\in N\right)\)
\(\Leftrightarrow\hept{\begin{cases}n+4⋮d\\n+5⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+4;n+5\right)=1\)
Vậy ...
giá trị nhỏ nhất là 0 mình không muốn giải lăng nhăng
ko giải thì ai biết cách làm