Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)\)
Đặt : \(x^2+9x+19=a\) . Ta được :
\(\left(a+1\right)\left(a-1\right)=a^2-1\)
Vì \(a^2\ge0\) với mọi x nên \(a^2-1\ge-1\)
Dấu \("="\) xảy ra khi \(a^2=0\Rightarrow a=0\Rightarrow x^2+9x+19=0\)
Mà : \(x^2+9x+19\ne0\) nên không có giá trị của x
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5
a) \(A=25x^2+3y^2-10x+11\)
\(A=\left(5x-1\right)^2+3y^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=0\end{matrix}\right.\)
b) \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(B=2\left(x^2-14x+65\right)\)
\(B=2\left[\left(x-7\right)^2+16\right]\)
\(B=2\left(x-7\right)^2+32\ge32\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=7\)
c) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x-6=a\)
\(C=a\left(a+12\right)\)
\(C=a^2+12a+36-36\)
\(C=\left(a+6\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow a=-6\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\\ C=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)\\ C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\\ C=\left(x^2-5x\right)^2-6^2\\ C=\left(x^2-5x\right)^2-36\)
Ta có:
\(\left(x^2-5x\right)^2\ge0\\ \Rightarrow C=\left(x^2-5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi và chỉ khi:
(x2 - 5x)2 = 0 => x2 - 5x = 0 => x(x - 5) = 0
=> x = 5 hoặc x = 0
Vậy MinC = -36 <=> x = 5; x = 0
Đặt \(\left|3x-1\right|=a\) nên \(A=a^2-4a+5\)
\(\Rightarrow A=\left(a^2-4a+4\right)+1=\left(a-2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
cách 1: đặt a = x+2 ,=> A= (a-3)4+(a+3)4-120
tách ra là ổn
cách 2 : áp dụng BĐT bunyakovsky:
(1+1)(a2+b2)\(\ge\)(a+b)2=> a2+b2\(\ge\)\(\frac{\left(a+b\right)^2}{2}\)(dấu = xảy ra khi a=b)
A= (x-1)4+(x+5)4-120=(1-x)4+(x+5)4-120\(\ge\)\(\frac{1}{2}\left[\left(x-1\right)^2+\left(x+5\right)^2\right]^2-120\)
\(A\ge\frac{1}{2}\left(2x^2+8x+26\right)^2-120=\frac{1}{2}\left[2\left(x+2\right)^2+18\right]^2-120\ge\frac{18^2}{2}-120=42\)
dấu = xảy ra khi 1-x=x+5 và x+2=0
=> x=-2
Ta có: (x-1)\(^4\) \(\ge\) 0 với mọi x
(x+5)\(^4\) \(\ge\) 0 với mọi x
\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) \(\ge\) 0 với mọi x
\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) -120 \(\ge\) -120 với mọi x
=> A\(\ge\) -120
=> GTNN của A bằng -120
Ta thấy \(11^m\)tận cùng bằng \(1\)
\(5^n\)tận cùng bằng \(5\)
Nếu \(11^m>5^n\)thì \(A\)tận cùng bằng \(6\)
Nếu \(11^m< 5^n\)thì \(A\)tận cùng bằng \(4\)
Khi \(m=2;n=3\)thì \(A=\left|121-124\right|=4\)
\(\Rightarrow Min\left(A\right)=4\)( chẳng hạn khi \(m=2;n=3\))