\(\left(x-3\right)^2\)+ \(\left(x+11\right)^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

\(A=x^2-6x+9+x^2+22x+121\)

\(=2x^2+16x+21=2\left(x^2+8x+16\right)-11\)

\(=2\left(x+4\right)^2-11\ge-11\)

\(M=\left(x^2-6xy+9y^2\right)+\left(x^2-10x+25\right)+4\left(x-3y\right)+2024\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\ge2020\)

29 tháng 8 2020

\(A=\left(x-3\right)^2+\left(x+11\right)^2=2x^2+16x+130\)

\(=2\left(x+4\right)^2+98\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+4\right)^2+98\ge98\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy minA = 98 <=> x = - 4

\(B=2x^2+9y^2-6xy-6x+12y+2049\)

\(\Leftrightarrow B=\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4+\left(x^2-10x+25\right)+2020\)

\(\Leftrightarrow B=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)

\(\Leftrightarrow B=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\)

Vì \(\hept{\begin{cases}\left(x-3y+2\right)^2\ge0\forall x;y\\\left(x-5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow B=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\ge2020\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x-3y+2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-3y=-2\\x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}\)

Vậy minB = 2020 <=> x = 5 ; y = 7/3

17 tháng 8 2020

1) \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=-27\)

2) \(8x^3-12x+6x-1=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)

\(=\left(2x-1\right)^3=\left(2.-\frac{1}{2}-1\right)^3=-8\)

3)\(\left(1-2x\right)^2-\left(3x+1\right)^2=\left(1-2x+3x+1\right)\left(1-2x-3x-1\right)\)

\(=\left(x+2\right)\left(-5x\right)=\left(-2+2\right).\left(-5.-2\right)=0\)

4) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=\left(2x-3y\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)

\(=\left(2x\right)^3-\left(3y\right)^3=\left(2.-\frac{1}{2}\right)^3-\left(3.-\frac{1}{3}\right)^3=-1-\left(-1\right)=0\)

17 tháng 8 2020

1) Ta có : \(8x^3+12x^2+6x+1\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=\left(-3\right)^3=-27\)

b) \(8x^3-12x^2+6x-1\)

\(=\left(2x-1\right)^3=\left[2.\left(-\frac{1}{2}\right)-1\right]^3=-8\)

2 tháng 9 2017

X=2007 đúng 100%

28 tháng 8 2019

A= 4x2 - 3x + 1

= (2x) 2 - 2.2x.4/3 + (4/3) 2 - (4/3) 2 + 1

= (2x - 4/3) 2 - 7/9

Nhận xét: (2x - 4/3) 2 \(\ge\)0 với mọi x

=> (2x - 4/3) 2 - 7/9 \(\le\) 7/9

=> Min A là 9

Dấu "=" xảy ra <=> 2x - 4/3 = 0 <=> 2x = 4/3 <=> x = 2/3

Vậy..

28 tháng 8 2019

thanks bn nhiều

19 tháng 6 2018

a,\(\left(2x^3y-0,5x^2\right)^3=\left(2x^3y\right)^3-3.\left(2x^3y\right)^2.\left(0,5x^2\right)+3.\left(0,5x^2\right)^2.\left(2x^3y\right)-\left(0,5x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\frac{3}{2}x^7y-\frac{1}{8}x^6\)

b,\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)

\(=\left(x^2\right)^3-3^3=x^6-27\)

NV
24 tháng 10 2019

\(A=\left(x+5\right)^2-62\ge-62\)

\(B=\left(\frac{1}{2}x^2+1-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

\(C=\left(x-3y+2\right)^2+\left(x-5\right)^2-9\ge-9\)

\(D=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\)

\(A=-\left(x-3\right)^2+12\le12\)

\(B=-2x^2-5x+3=-2\left(x+\frac{5}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)

\(C=\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

3 tháng 7 2018

a)   \(x^2+2x+1=\left(x+1\right)^2\)

b)   \(9x^2+y^2+6xy=\left(3x+y\right)^2\)

c)   \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)

d)   \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

e)   \(\left(2x+3y\right)^3+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

f) mk chỉnh lại đề nha:

 \(2xy^2+x^2y^4+1=\left(xy^2+1\right)^2\)

g)  \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

h)  \(x^2-10xy+25y^2=\left(x-5y\right)^2\)

3 tháng 7 2018

cảm ơn bn nha!

a) Ta có: \(\left(x-3\right)^3\)

\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)

\(=x^3-9x^2+27x^2-27\)

b) Ta có: \(\left(2x-3\right)^3\)

\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2-3^3\)

\(=8x^3-36x^2+54x-27\)

c) Ta có: \(\left(x-\frac{1}{2}\right)^3\)

\(=x^3-3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3\)

\(=x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\)

d) Ta có: \(\left(x^2-2\right)^3\)

\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3\)

\(=x^6-6x^4+12x^2-8\)

e) Ta có: \(\left(2x-3y\right)^3\)

\(=\left(2x\right)^3-2\cdot\left(2x\right)^2\cdot3y+2\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)

\(=8x^3-24x^2y+36xy^2-27y^3\)

f) Ta có: \(\left(\frac{1}{2}x-y^2\right)^3\)

\(=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)

\(=\frac{1}{8}x^3-\frac{3}{4}x^2y^2+\frac{3}{2}xy^4-y^6\)

11 tháng 8 2020

a, \(A=\left(100+50\right)^2=22500\)

b, \(B=\left(127+73\right)^2=40000\)

c, \(C=-6x+25\)Thay x = 100 ta có : 

\(C=-6.100+25=-600+25=-575\)

11 tháng 8 2020

\(A=100^2+200.50+50^2\)

\(=100^2+2.100.5+50^2\)

\(=\left(100+50\right)^2=150^2\)

\(B=127^2+146.127+73^2\)

\(=127^2+2.73.127+73^2\)

\(=\left(127+73\right)^2=200^2\)