K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016
May la ai
18 tháng 11 2016

Câu này ở đâu vậy bạn dạng này lạ quá

31 tháng 10 2019

1/ n=3

31 tháng 10 2019

\(B=x^2+\frac{1}{x^2}\ge\sqrt{x^2\cdot\frac{1}{x^2}}=1\)

Dấu "=" xảy ra tại \(x=y=1\)

18 tháng 11 2016

Ta thấy \(11^m\) tận cùng bằng 1, còn \(5^n\) tận cùng bằng 5. Nếu \(11^m>5^n\) thì A tận cùng bằng 6, nếu \(11^m< 5^n\) thì A tận cùng bằng 4.

Ta chỉ ra trường hợp A = 4 : với m = 2, n = 3 thì A = |121-125| = 4

Như vậy min A = 4 khi chẳng hạn m = 2, n = 3

25 tháng 1 2018

Ta thấy 11m tận cùng bằng 1, còn 5n tận cùng bằng 5.

Nếu 11m>5n thì A tận cùng bằng 6, nếu 11m<5n thì A tận cùng bằng 4.

Ta chỉ ra trường hợp A = 4 : với m = 2, n = 3 thì A = |121-125| = 4

Như vậy min A = 4 khi chẳng hạn m = 2, n = 3

16 tháng 11 2016

giá trị nhỏ nhất là 0 mình không muốn giải lăng nhăng

16 tháng 11 2016

ko giải thì ai biết cách làm

a: \(x^3+x^2-11x+n⋮x-2\)

\(\Leftrightarrow x^3-2x^2+3x^2-6x-5x+10+n-10⋮x-2\)

=>n-10=0

hay n=10

b: \(A=x^2+4x+7\)

\(=x^2+4x+4+3\)

\(=\left(x+2\right)^2+3>=3\)

Dấu '=' xảy ra khi x=-2

c: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\dfrac{4}{5}x-\dfrac{1}{5}\right)\)

\(=-5\left(x^2+2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}-\dfrac{9}{25}\right)\)

\(=-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\le\dfrac{9}{5}\)

Dấu '=' xảy ra khi x=-2/5

31 tháng 10 2019

2: Ta có: \(B=x^2+\frac{1}{x^2}\)

\(=x^2-2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}+2\)

\(=\left(x-\frac{1}{x}\right)^2+2\)

Ta có: \(\left(x-\frac{1}{x}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{x}\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{1}{x}\right)^2=0\Leftrightarrow x-\frac{1}{x}=0\Leftrightarrow x=\frac{1}{x}\)\(\Leftrightarrow x=\pm1\)

Vậy: GTNN của đa thức \(B=x^2+\frac{1}{x^2}\) là 2 khi \(x=\pm1\)

NV
31 tháng 10 2019

\(A=\left(2n-5\right)\left(2n+5\right)\)

A là SNT khi và chỉ khi \(2n-5=1\)\(2n+5\) là SNT

\(2n-5=1\Rightarrow n=3\)

\(\Rightarrow2n+5=11\) (thỏa mãn)

Vậy \(n=3\)

15 tháng 5 2021

Ta có: 3x + y = 1 => y = 1 - 3x

a, Thay y = 1 - 3x vào M, ta có:

\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)

\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)

Vậy GTNN M = 1/4 khi x = y = 1/4

b, Thay y = 1 - 3x vào N

\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)

\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)

Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)

Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2

18 tháng 12 2019

Ta có:

 \(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)

\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)

=> max A = 1 tại x = 1

\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)

\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)

=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2

Vậy...